Skip to main content

Advertisement

Log in

Morphological Multiscale Enhancement, Fuzzy Filter and Watershed for Vascular Tree Extraction in Angiogram

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper presented an automatic morphological method to extract a vascular tree using an angiogram. Under the assumption that vessels are connected in a local linear pattern in a noisy environment, the algorithm decomposes the vessel extraction problem into several consecutive morphological operators, aiming to characterize and distinguish different patterns on the angiogram: background, approximate vessel region and the boundary. It started with a contrast enhancement and background suppression process implemented by subtracting the background from the original angiogram. The background was estimated using multiscale morphology opening operators by varying the size of structuring element on each pixel. Subsequently, the algorithm simplified the enhanced angiogram with a combined fuzzy morphological opening operation, with linear rotating structuring element, in order to fit the vessel pattern. This filtering process was then followed by simply setting a threshold to produce approximate vessel region. Finally, the vessel boundaries were detected using watershed techniques with the obtained approximate vessel centerline, thinned result of the obtained vessel region, as prior marker for vessel structure. Experimental results using clinical digitized vascular angiogram and some comparative performance of the proposed algorithm were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, S. J., and Carroll, J. D., 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Trans. Med. Imag. 19(4):318–336, 2000.

    Article  Google Scholar 

  2. Tom, B. C. S., Efstratiadis, S. N., and Katsaggelos, A. K., Motion estimation of skeletonized angiographic images using elastic registration. IEEE Trans. Med. Imag. 13(9):450–460, 1994.

    Article  Google Scholar 

  3. Kirbas, C., and Quek, F., A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2):81–121, 2004.

    Article  Google Scholar 

  4. Otsu, N., A threshold selectin method from grey level histogram. IEEE Trans. Syst. Man Cybern. 8:62–66, 1978.

    Article  Google Scholar 

  5. Chaudhuri, S., Chatterjee, S., Katz, N., et al., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3):263–269, 1989.

    Article  Google Scholar 

  6. Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:262–267, 2007.

    Article  Google Scholar 

  7. Sofka, M., and Stewart, C. V., Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imag. 25(12):1531–1546, 2006.

    Article  Google Scholar 

  8. Vermeer, K. A., Vos, F. M., Lemij, H. G., and Vossepoel, A. M., A model based method for retinal blood vessel detection. Comput. Biol. Med. 34:209–219, 2004.

    Article  Google Scholar 

  9. Figueiredo, M. A. T., and Leitao, J. M. N., A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. Med. Imag. 14(7):162–172, 1995.

    Article  Google Scholar 

  10. Haris, K., Efstratiadis, S., Maglaveras, N., Pappas, C., Gourassas, J., and Louridas, G., Model-based morphological segmentation and labeling of coronary angiograms. IEEE Trans. Med. Imag. 18(10):1003–1015, 1999.

    Article  Google Scholar 

  11. Thackray, B. D., and Nelson, A. C., Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Trans. Med. Imag. 12(3):385–392, 1993.

    Article  Google Scholar 

  12. Zana, F., and Klein, J. C., Segmentation of vessel-like pattern using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7):1010–1019, 2001.

    Article  MATH  Google Scholar 

  13. Sun, K. Q., Sang, N., and Zhao, E. D., Extraction of vascular tree on angiogram with fuzzy morphological method. Int. J. Inf. Technol. 11(9):119–127, 2005.

    Google Scholar 

  14. Tang, P. H., Liu, H., and Sun, K. Q., Enhancement of coronary angiogram by estimation of local background. In: Proceedings of SPIE Medical Imaging: Image Processing. Vol. 6789, p. 678918.1–6, 2007.

  15. Sun, K. Q., Jiang, S. F., and Wang. Y., Segmentation of coronary artery on angiogram by combined morphological operations and watershed. In: Proceedings of the 2nd International Conference on BioMedical Engineering and Informatics. Vol. 2, pp. 679–682, 2009.

  16. Serra, J., Image Analysis and Mathematical Morphology. Vol. 1. New York: Academic, 1982.

    MATH  Google Scholar 

  17. Haralick, R. M., Sternberg, S. R., and Zhuang, X. H., Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(7):532–550, 1987.

    Article  Google Scholar 

  18. Maccarone, M. C., Fuzzy mathematical morphology concepts and applications. Vistas Astron. 40(4):469–477, 1996.

    Article  Google Scholar 

  19. Mukhopadhyay, S., and Chanda, B., A multiscale morphological approach to local contrast enhancement. Signal Process. 80:685–696, 2000.

    Article  MATH  Google Scholar 

  20. Vincent, L., and Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6):583–598, 1991.

    Article  Google Scholar 

  21. Vincent, L., Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Image Process. 2(8):176–201, 1993.

    Article  MathSciNet  Google Scholar 

  22. Wink, O., Niessen, W. J., and Viergever, M. A., Multiscale vessel tracking. IEEE Trans. Med. Imag. 23(1):130–133, 2004.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Doctorial Start-up Fund of NCHU (No.EA200908016) and International cooperation Project of Jiangxi Province (No. 2060402108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiqiong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, K., Chen, Z., Jiang, S. et al. Morphological Multiscale Enhancement, Fuzzy Filter and Watershed for Vascular Tree Extraction in Angiogram. J Med Syst 35, 811–824 (2011). https://doi.org/10.1007/s10916-010-9466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9466-3

Keywords

Navigation