Skip to main content

Advertisement

Log in

Diagnosing Breast Masses in Digital Mammography Using Feature Selection and Ensemble Methods

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Methods that can accurately predict breast cancer are greatly needed and good prediction techniques can help to predict breast cancer more accurately. In this study, we used two feature selection methods, forward selection (FS) and backward selection (BS), to remove irrelevant features for improving the results of breast cancer prediction. The results show that feature reduction is useful for improving the predictive accuracy and density is irrelevant feature in the dataset where the data had been identified on full field digital mammograms collected at the Institute of Radiology of the University of Erlangen-Nuremberg between 2003 and 2006. In addition, decision tree (DT), support vector machine—sequential minimal optimization (SVM-SMO) and their ensembles were applied to solve the breast cancer diagnostic problem in an attempt to predict results with better performance. The results demonstrate that ensemble classifiers are more accurate than a single classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Razavi, A. R., Gill, H., Åhlfeldt, H., and Shahsavar, N., Predicting metastasis in breast cancer: comparing a decision tree with domain experts. J. Med. Syst. 31:263–273, 2007.

    Article  Google Scholar 

  2. Brenner, H., Long-term survival rates of cancer patients achieved by the end of the 20th century: a period analysis. Lancet. 360:1131–1135, 2002.

    Article  Google Scholar 

  3. Nystrom, L., Andersson, I., Bjurstam, N., Frisell, J., Nordenskjold, B., and Rutqvist, L. E., Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet. 359(9310):909–919, 2002.

    Article  Google Scholar 

  4. Bjurstam, N., Bjorneld, L., Warwick, J., Sala, E., Duffy, S. W., Nyström, L., et al., The Gothenburg breast screening trial. Cancer. 97(10):2387–2396, 2003.

    Article  Google Scholar 

  5. Rijnsburger, A. J., van Oortmarssen, G. J., Boer, R., Draisma, G., Miler, A. B., et al., Mammography benefit in the Canadian National Breast Screening Study-2: a model evaluation. Int. J. Cancer. 110(5):756–762, 2004.

    Article  Google Scholar 

  6. Carney, P. A., Miglioretti, D. L., Yankaskas, B. C., Kerlikowske, K., Rosenberg, R., Rutter, C. M., et al., Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med. 138(3):168–175, 2003.

    Google Scholar 

  7. Pisano, E. D., Gatonis, C., Hendrick, E., Yaffe, M., Baum, J. K., Acharyya, S., et al., Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med. 353:1773–1783, 2005.

    Article  Google Scholar 

  8. Pisano, E. D., Gatonis, C., Hendrick, E., Yaffe, M., Baum, J. K., Acharyya, S., et al., Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology. 246(3):376–383, 2008.

    Article  Google Scholar 

  9. Kulkarni, A. D., Computer Vision and Fuzzy-Neural Systems. Prentice-Hall, Englewood-Cliffs, 2001.

    Google Scholar 

  10. Karssemeijer, N., Adaptive noise equalization and recognition of microcalcification clusters in mammograms. Int. J. Pattern. Recog. Artificial. Intell. 7(6):1357–1376, 1993.

    Article  Google Scholar 

  11. Priebe, C. E., Lorey, R. A., Marchette, D. J., Solka, J. L., and Rogers, G. W., Nonparametric spatio-temporal change point analysis for early detection in mammography. In: Gale, A. G., Astley, S. M., Dance, D. R., and Cairns, A. Y. (Eds.), Digital mammography. Elsevier, Amsterdam, pp. 111–120, 1994.

    Google Scholar 

  12. Heine, J. J., Deans, S. R., Cullers, D. K., Stauduhar, R., and Clarke, L. P., Multiresolution statistical analysis of high-resolution digital mammograms. IEEE. Trans. Med. Imaging. 5(16):503–515, 1997.

    Article  Google Scholar 

  13. Rakowski, W., and Clark, M. A., Do groups of women aged 50–75 match the national average mammography rate? Am. J. Prev. Med. 15(3):187–197, 1998.

    Article  Google Scholar 

  14. Chhatwal, J., Alagoz, O., Lindstrom, M. J., Kahn, C. E., Jr., Shaffer, K. A., and Burnside, E. S., A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. Am. J. Roentgenol. 192(4):1117–1127, 2009.

    Article  Google Scholar 

  15. Sameti, M., and Ward, R. K., A fuzzy segmentation algorithm for mammogram partitioning. In: Doi, K., Giger, M. L., Nishikawa, R. M., and Schmidt, R. A. (Eds.), Third international workshop on digital mammography. Elsevier, Amsterdam, pp. 471–474, 1996.

    Google Scholar 

  16. Qian, W., Sunden, P., Sjostrom, H., Fenger-Krog, H., and Brodin, U., Comparison of image quality for different digital mammogram image processing parameter settings versus analogue film. Electromedica. 71(1):2–6, 2003.

    Google Scholar 

  17. Verma, B., and Zakos, J. A., Computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques. IEEE T. Inf. Technol. Biomed. 5(1):46–54, 2001.

    Article  Google Scholar 

  18. Acharya, U. R., Ng, E. Y. K., Chang, Y. H., Yang, J., and Kaw, G. J. L., Computer-based identification of breast cancer sing digitized mammograms. J. Med. Syst. 32(6):499–507, 2008.

    Article  Google Scholar 

  19. Rafayah, M., Qutaishat, M., and Abdallah, M., Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural. Expert. Syst. Appl. 28(4):713–723, 2005.

    Article  Google Scholar 

  20. Verma, B., and Panchal, R., Neural networks for the classification of benign and malignant patterns in digital mammograms. In: Fulcher, J. (Ed.), Advances in applied artificial intelligence. Idea Group, USA, 2006.

    Google Scholar 

  21. Brijesh, B., Novel network architecture and learning algorithm for the classification of mass abnormalities in digitized mammograms. Artif. Intell. Med. 42(1):67–79, 2008.

    Article  Google Scholar 

  22. Li, Y., and Jiang, J., Combination of SVM knowledge for microcalcification detection in digital mammograms. Lect. Notes Comput. Sci. 3177:359–365, 2004.

    Article  Google Scholar 

  23. de Oliveira Martins, L., Junior, G. B., Correa Silva, A., de Paiva, A. C., and Gattass, M., Detection of masses in digital mammograms using K-means and support vector machine. Electron. Lett. Comput. Vis. Image. Ana. 8(2):39–50, 2009.

    Google Scholar 

  24. Yang, J., and Olafsson, S., Optimization-based feature selection with adaptive instance sampling. Comput. Oper. Res. 33(11):3088–3106, 2006.

    Article  MATH  Google Scholar 

  25. Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J., Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10):1619–1630, 2006.

    Article  Google Scholar 

  26. Kuncheva, L. I., Combining pattern classifiers: methods and algorithms. Wiley-IEEE Press, New York, 2004.

    Book  MATH  Google Scholar 

  27. Schapire, R. E., The strength of weak learnability. Mach. Learn. 5(2):197–227, 1990.

    Google Scholar 

  28. Mitchell, T., Machine learning. McGraw-Hill, New York, 1997.

    MATH  Google Scholar 

  29. Witten, I. H., and Frank, E., Data mining: practical machine learning tools with java implementations. Morgan Kaufmann, San Francisco, 2000.

    Google Scholar 

  30. Razavi, A.R., Gill, H., Åhlfeldt, H., and Shahsavar, N.: A data pre-processing method to increase efficiency and accuracy in data mining. In: Miksch, S., Hunter, J., Keravnou, E. (eds.) 10th Conference on Artificial Intelligence in Medicine. Springer-Verlag GmbH, Aberdeen, pp. 434–443, 2005.

  31. Quinlan, J. R., C4.5: Programs for machine learning. CA: Morgan Kaufmann, San Mateo, 1993.

    Google Scholar 

  32. Vapnik, V. N., The nature of statistical learning theory. Springer, Berlin, 1995.

    MATH  Google Scholar 

  33. Platt, J.C.: Sequential minimal optimization: a fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998.

  34. Melville, P., and Monney, R. J., Creating diversity in ensembles using artificial data. Inf. Fusion. 6(1):99–111, 2005.

    Article  Google Scholar 

  35. Schapire, R. E., Freund, Y., Bartlett, P. L., and Lee, W. S., Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26(5):1651–1686, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. Breiman, L., Random forests. Mach. Learn. 45(1):5–32, 2001.

    Article  MATH  Google Scholar 

  37. Kim, H. C., Pang, S., Je, H. M., Kim, D., and Bang, S. Y., Constructing support vector machine ensemble. Pattern. Recognit. 36(12):2757–2767, 2003.

    Article  MATH  Google Scholar 

  38. Valentini, G., and Dietterich, T. G., Low bias bagged support vector machines. In: Fawcett, T., and Mishra, N. (Eds.), International conference on machine learning. AAAI press, California, 2003.

    Google Scholar 

  39. Breiman, L., Bagging predictors. Mach. Learn. 24(2):123–140, 1996.

    MathSciNet  MATH  Google Scholar 

  40. Freund, Y., and Schapire, R. E., A decision-theoretic generalization of on-line learning and an application to Boosting. J. Comput. Syst. Sci. 55(1):119–139, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, C. X., Zhang, J. S., and Zhang, G. Y., An efficient modified Boosting method for solving classification problems. J. Comput. Appl. Math. 214(2):381–392, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  42. Webb, G. I., MultiBoosting: a technique for combining Boosting and wagging. Mach. Learn. 40(2):159–197, 2000.

    Article  Google Scholar 

  43. Delen, D., Walker, G., and Kadam, A., Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34:113–127, 2005.

    Article  Google Scholar 

  44. Centor, R. M., Signal detectability: the use of ROC curves and their analyses. Med. Decis. Mak. 11:102–106, 1991.

    Article  Google Scholar 

  45. Hanley, J. A., and McNeil, B., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 143(1):29–36, 1982.

    Google Scholar 

  46. DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44:837–845, 1988.

    Article  MATH  Google Scholar 

  47. Newmann, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning database. http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass, Irvine, CA: University of California, Department of Information and Computer Science, (1998)

  48. Kopans, D. B., D’Orsi, C. J., Adler, D. D., et al., Breast Imaging Reporting and Data System (BIRADS). American College of Radiology, Reston, 1993.

    Google Scholar 

  49. Elter, M., Wendtland, R. S., and Wittenberg, T., The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med. Phys. 34(11):4164–4172, 2007.

    Article  Google Scholar 

  50. Zhang, G. P., Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 30(4):451–462, 2000.

    Article  Google Scholar 

  51. Zangwill, L. M., Chan, K., Bowd, C., Hao, J., Lee, T. W., Weinreb, R. N., et al., Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest. Ophthalmol. Vis. Sci. 45(3):3144–3151, 2004.

    Article  Google Scholar 

Download references

Acknowledgement

The authors like to express our appreciations to Prof. Gordon Turner-Walker for his help in correcting earlier versions of this paper. We also would like to thank the anonymous reviewers for their valuable comments and insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ting Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, ST., Cheng, BW. Diagnosing Breast Masses in Digital Mammography Using Feature Selection and Ensemble Methods. J Med Syst 36, 569–577 (2012). https://doi.org/10.1007/s10916-010-9518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9518-8

Keywords

Navigation