Skip to main content
Log in

A Neuro-Fuzzy Identification of ECG Beats

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper presents a fuzzy rule based classifier and its application to discriminate premature ventricular contraction (PVC) beats from normals. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied to discover the fuzzy rules in order to determine the correct class of a given input beat. The main goal of our approach is to create an interpretable classifier that also provides an acceptable accuracy. The performance of the classifier is tested on MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) arrhythmia database. On the test set, we achieved an overall sensitivity and specificity of 97.92% and of 94.52% respectively. Experimental results show that the proposed approach is simple and effective in improving the interpretability of the fuzzy classifier while preserving the model performances at a satisfactory level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. www.merck.com/mmhe/sec03/ch027/ch027f.html

  2. Mehra, R., Benjamin, E., Shahar, E., et al., Association of nocturnal arrhythmias with sleep disordered breathing. The Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 173:910–916, 2006.

    Article  Google Scholar 

  3. Surawicz, B., and Knilans, T. K., Chou’s Electrocardiography in Clinical Practice, 5th edition. Philadelphia: W. B. Saunders, pp. 400–401, 2001.

    Google Scholar 

  4. Sajadieh, A., Nielsen, O. W., Rasmussen, V., Hein, H. O., Frederiksen, B. S., Davanlou, M., and Hansen, J. F., Ventricular arrhythmias and risk of death and acute myocardial infarction in apparently healthy subjects of age >or=55 years. Am. J. Cardiol. 97:1351–1357, 2006.

    Article  Google Scholar 

  5. Massing, M. W., Simpson, R. J., Jr., Rautaharju, P. M., et al., Usefulness of ventricular premature complexes to predict coronary heart disease events and mortality (from the Atherosclerosis Risk in Communities cohort). Am. J. Cardiol. 98:1609–1612, 2006.

    Article  Google Scholar 

  6. Abdalla, I. S., Prineas, R. J., Neaton, J. D., et al., Relation between ventricular premature complexes and sudden cardiac death in apparently healthy men. Am. J. Cardiol. 60:1036–42, 1987.

    Article  Google Scholar 

  7. www.ukpmc.ac.uk/articlerender.cgi?tool=pubmed&pubmedid=18982135

  8. Mohamadi, H., Habibi, J., Abadeh, M. S., and Saadi, H., Data mining with a simulated annealing based fuzzy classification system. Pattern Recognit. 41(5):1824–1833, 2008.

    Article  MATH  Google Scholar 

  9. Er, M. J., and Zhou, Y., Automatic generation of fuzzy inference systems via unsupervised learning. Neural Netw. 21(10):1556–1566, 2008.

    Article  Google Scholar 

  10. Nakashima, T., Schaefer, G., Yokota, Y., and Ishibuchi, H., A weighted fuzzy classifier and its application to image processing tasks. Fuzzy Sets Syst. 158:284–294, 2007.

    Article  MathSciNet  Google Scholar 

  11. Takagi, T., and Sugeno, M., Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15:116–132, 1985.

    MATH  Google Scholar 

  12. Wang, L.-X., and Mendel, J.-M., Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6):1414–1427, 1993.

    Article  MathSciNet  Google Scholar 

  13. J-SR, Jang, ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3):665–685, 1993.

    Article  Google Scholar 

  14. Wang, L.-X., Adaptive Fuzzy Systems and Control. Englewood Cliffs, NJ: Prentice-Hall, 1994.

    Google Scholar 

  15. Gan, Q., and Harris, C. J., Fuzzy local linearization and local basis function expansion in nonlinear system modeling. IEEE Trans. Syst. Man Cybern. Part B. 29(4):559–565, 1999.

    Article  Google Scholar 

  16. Harris, C.J, Hong, X., and Gan, Q., Adaptive modeling, estimation and fusion from data—a neurofuzzy approach. Springer, 2002.

  17. Jin, Y., Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst. 8(2):212–221, 2000.

    Article  Google Scholar 

  18. Hoppner, F., and Klawonn, F., Obtaining Interpretable Fuzzy Models From Fuzzy Clustering and Fuzzy Regression, Proc. of the 4th Int. Conf. on Knowledge-based Intelligent Eng. Syst. and Allied Tech (KES), Brighton, UK, pp. 162–165, 2000.

  19. Roubos, H., and Setnes, M., Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. Fuzzy Syst. 9(4):516–524, 2001.

    Article  Google Scholar 

  20. Guillaume, S., Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans. Fuzzy Syst. 9(3):426–443, 2001.

    Article  MathSciNet  Google Scholar 

  21. Johansen, T. A., and Babuska, R., Multi-objective identification of Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 11(6):847–860, 2003.

    Article  Google Scholar 

  22. Casillas, J., Cordon, O., Herrera, F., and Magdalena, L., Interpretability improvements to find the balance between interpretability-accuracy in fuzzy modeling: an overview. In: Casillas, J., Cordon, O., Herrera, F., and Magdalena, L., (Eds.), Interpretability Issues in Fuzzy Modeling, Vol. 128 of Studies in Fuzziness and Soft Computing. Springer, pp. 3–24, 2003.

  23. Zhou, S.-M., and Gan, J. Q., Interpretability Improvement of Input Space Partitioning by Merging Fuzzy Sets Based on An Entropy Measure, Proc. of IEEE Int. Conference on Fuzzy Systems (FUZZ-IEEE2004), Budapest, Hungary, pp. 287–292, July 2004.

  24. Zhou, S.-M., and Gan, J. Q., Improving the Interpretability of Takagi-Sugeno Fuzzy Model by Using Linguistic Modifiers and A Multiple Objective Learning Scheme, Proc. of the Int. Joint Conf. on Neural Networks (IJCNN2004), Budapest, pp. 2385–2390, 2004.

  25. Belal, S. Y., Taktak, A. F., Nevill, A. J., Spencer, S. A., Roden, D., and Bevan, S., Automatic detection of distorted plethysmogram pulses in neonates and pediatric patients using an adaptive-network-based fuzzy inference system. Artif. Intell. Med. 24(2):149–165, 2002.

    Article  Google Scholar 

  26. Ubeyli, E. D., and Guler, I., Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods. 148(2):113–121, 2005.

    Article  Google Scholar 

  27. Xu, W., Li, L., and Zou, S., Detection and Classification of Microcalcifications Based on DWT and ANFIS. In: The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007, July 6–8, pp. 547–550, 2007.

  28. Übeyli, E. D., Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J. Med. Syst. 18:157–174, 2008.

    Google Scholar 

  29. Heydari, Z., Farzam, F., Arabalibeik, H., and Parnianpour, M., Adaptive neuro-fuzzy inference systems for classification of ACL-ruptured knees using arthrometric data. J. Med. Syst. 18:157–174, 2008.

    Google Scholar 

  30. Buckley, J. J., and Hayashi, Y., Neural nets for fuzzy systems. Fuzzy Sets Syst. 71:265–276, 1995.

    Article  MathSciNet  Google Scholar 

  31. Nauck, D., and Kruse, R., NEFCLASS—A neuro-fuzzy approach for the classification of data. In: ACM Symposium on Applied Computing. New York: Nashville, pp. 461–465, February, 1995.

  32. Belal, S. Y., Taktak, A. F. G., Nevill, A. J., Spencer, S. A., Roden, D., and Bevan, S., Automatic detection of distorted plethysmogram pulses in neonates and pediatric patients using an adaptive-network-based fuzzy-inference system. Artif. Intell. Med. 24:149–165, 2009.

    Article  Google Scholar 

  33. Jang, J. S. R., Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. Neural Netw. 3(5):714–723, 1992.

    Article  Google Scholar 

  34. Tsukamoto, Y., An approach to fuzzy reasoning method. In: Gupta, M. M., Ragade, R. K., and Yager, R. R., (Eds.), Advances in Fuzzy Set Theory and Applications, 137:149. North-Holland, Amsterdam, 1979.

  35. Mamdani, E. H., Applications of fuzzy algorithms for control for a simple dynamic plant. Proc. IEEE. 121(12):1585–1588, 1974.

    Google Scholar 

  36. MIT-BIH arrhythmia database [http://www.physionet.org/physiobank/database/mitdb/]

  37. Pan, J., and Tompkins, W. J., A real time QRS detection algorithm. IEEE Trans. Biomed. Eng. 23(4):230–236, 1985.

    Article  Google Scholar 

  38. Shah, S., Palmieri, F., and Datum, M., Optimal filtering algorithms for fast learning in feedforward neural Networks. Neural Netw. 5:779–787, 1992.

    Article  Google Scholar 

  39. Sugeno, M., and Kang, G. T., Structure identification of fuzzy model. Fuzzy Sets Syst. 28:15–33, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  40. Tanaka, K., Sano, M., and Watanabe, H., Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique. IEEE Trans. Fuzzy Syst. 3:271–279, 1995.

    Article  Google Scholar 

  41. Jang, J.-S. R., and Mizutani, E., Levenberg-Marquardt Method for ANFIS Learning, Biennial Conference of the North American Fuzzy Information Processing Society, pp. 87–91, June 1996.

  42. Jana, A., Yang, P. H., Auslander, D. M., and Dave, R. N., Real Time Neuro-Fuzzy Control of a Nonlinear Dynamic System, Biennial Conference of the North American Fuzzy Information Processing Society, pp. 210–214, June 1996.

  43. Yu, S.-N., and Chou, K.-T., Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34(4), 2007.

  44. Yu, S. N., and Chen, Y. H., Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recognit. Lett. 28:1142–1150, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Amine Chikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikh, M.A., Ammar, M. & Marouf, R. A Neuro-Fuzzy Identification of ECG Beats. J Med Syst 36, 903–914 (2012). https://doi.org/10.1007/s10916-010-9554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9554-4

Keywords

Navigation