Skip to main content

Advertisement

Log in

A New Approach for Concealed Information Identification Based on ERP Assessment

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Recently, numerous concealed information test (CIT) studies have been done with event related potential (ERP) for its sufficient validity in applied use. In this study, a new approach based on wavelet coefficients (WCs) and kernel learning algorithm is proposed to identify concealed information. Totally 16 subjects went through the designed CIT paradigm and the multichannel electroencephalogram (EEG) signals were recorded. Then, the high-dimensional WCs of ERP in delta, theta, alpha and beta rhythms were extracted. For the analysis of the data, kernel principle component analysis (KPCA) and a support vector machines (SVM) classifier are implemented. The results show that WCs features are significant differences between concealed information and irrelevant information (P < 0.05). The KPCA is able to effectively reduce feature dimensionalities and increase generalization performance of SVM. A high accuracy (93.6%) in recognizing concealed information and irrelevant information is achieved, which indicates the combination KPCA and SVM may provide a useful tool for detecting the concealed information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meijer, E. H., Verschuere, B., and Harald Merchelbach, H., Detecting criminal intent with the concealed information test. Open Criminol. J. 3:44–47, 2010.

    Article  Google Scholar 

  2. The National Academies’ National Research Council, The polygraph and lie detection. National Academies Press, Washington, DC, pp. 11–28, 2003.

    Google Scholar 

  3. Lykken, D. T., The GSR in the deteciton of guilt. J. Appl. Psychol. 43:385–388, 1959.

    Article  Google Scholar 

  4. Ben-Shakhar, G., and Elaad, E., The validity of psychophysiological detection of information with the guilty knowledge test: a meta-analytic interview. J. Appl. Psychol. 88:131–151, 2003.

    Article  Google Scholar 

  5. Rosenfeld, P. J., Alternative views of Bashore and Rapp's (1993) alternatives to traditional polygraph: a critique. Psychol. Bull. 117:159–166, 1995.

    Article  Google Scholar 

  6. Rosenfeld, J. P., Shue, E., and Singer, E., Single versus multiple probe blocks of P300-based concealed information tests for self-referring versus incidentally obtained information. Biol. Psychol. 74:396–404, 2007.

    Article  Google Scholar 

  7. Nose, I., Murai, J., and Taira, M., Disclosing concealed information on the basis of cortical activations. Neuroimage 44:1380–1386, 2009.

    Article  Google Scholar 

  8. Ganis, G., Kosslyn, S. M., Stose, S., Thompson, W. L., and Yurgelun-Todd, D. A., Neural correlates of different types of deception: an fMRI investigation. Cereb. Cortes. 13:830–836, 2003.

    Article  Google Scholar 

  9. Meixner, J. B., and Rosenfeld, J. P., Countermeasure mechanisms in a P300-based concealed information test. Psychophysiology 47:57–65, 2010.

    Article  Google Scholar 

  10. Mertens, R., and Allen, J. J. B., The role of psychophysiology in forensic assessments: deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology 45:286–298, 2008.

    Article  Google Scholar 

  11. Fehér, O., and Schnell, R., Visual event related potentials the origin of wave P300 a computer model. Acta Biol. Hung. 53(4):445–464, 2002.

    Article  Google Scholar 

  12. Abootalebi, V., Moradi, M. H., and Khalizadeh, M. A., Comparison of methods for ERP assessment in a P300-based GKT. Int. J. Psychophysiol. 62:309–320, 2006.

    Article  Google Scholar 

  13. Farwell, L. A., and Donchin, E., The truth will out: interrogative polygraphy ("lie detecion") with event-related brain potentials. Psychophysiology 28:531–547, 1991.

    Article  Google Scholar 

  14. Rosenfeld, J. P., Soskins, M., Bosh, G., and Ryan, A., Simple, effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology 41:205–219, 2004.

    Article  Google Scholar 

  15. Demiralp, T., Ademoglu, A., Schurmann, M., Basar-Eroglu, C., and Basar, E., Detection of P300 waves in Single Trails by the Wavelet Transform (WT). Brain Lang. 66:108–128, 1999.

    Article  Google Scholar 

  16. Merazgora, A. C., Bunce, S., Izzetoglu, M., and Onaral, B., Wavelet analysis for EEG feature extraction in deception detection. Proceeding of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug. 2434–2437, 2006.

  17. Demiralp, T., Ademoglu, A., Istefanopulos, Y., Basar-Eroglu, C., and Basar, E., Wavelet analysis of oddball P300. Int. J. Psychophysiol. 39:221–227, 2001.

    Article  Google Scholar 

  18. Teixeira, A. R., Tome, A. M., Stadlthanner, K., and Lang, E. W., KPCA denoising and the pre-image problem revisited. Digit. Signal Process. Rev. Journal. 18(4):568–580, 2008.

    Article  Google Scholar 

  19. Kocsor, A., and Toth, L., Kernel-based feature extraction with a speech technology application. IEEE Trans. Signal Process. 52(8):2250–2263, 2004.

    Article  MathSciNet  Google Scholar 

  20. Xu, Y., Zhang, D., Song, F. X., Yang, J. Y., Jing, Z., and Li, M., A method for speeding up feature extraction based on KPCA. Neurocomputing. 70:1056–1061, 2007.

    Article  Google Scholar 

  21. Ubeyli, E. D., Time-varying biomedical signals analysis with multiclass support vector machines employing Lyapunov exponents. Digit Signal Process. 38(4):646–656, 2008.

    Article  Google Scholar 

  22. Daubechies, I., Ten lectures on wavelets. CBMS-NSF regional series in applied mathematics. SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  23. Vapnik, V. N., The nature of statistical learning theory. Springer, New York, 1995.

    MATH  Google Scholar 

  24. Scholkopf, B., Smola, A., and Muller, K. R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5):1299–1319, 1998.

    Article  Google Scholar 

  25. Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., and Scholkopf, B., An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2):181–201, 2001.

    Article  Google Scholar 

  26. Rosenfeld, J. P., Ellwanger, J. W., Nolan, K., Wu, S., Bermann, R. G., and Sweet, J., P300 Scalp amplitude distribution as an index of deception in a simulated cognitive deficit model. Int. J. Psychophysiol. 33:3–19, 1999.

    Article  Google Scholar 

  27. Rosenfeld, J. P., Biroschak, J. R., and Furedy, J. J., P300-based detection of concealed autobiographical versus incidentally acquired information in target and non-target paradigms. Int. J. Psychophysiol. 60:251–259, 2006.

    Article  Google Scholar 

  28. Lefebvre, C. D., Marchand, Y., Smith, S. M., and Connolly, J. F., Use of event-related brain potentials (ERPs) to assess eyewitness accuracy and deception. Int. J. Psychophysiol. 73:218–255, 2009.

    Article  Google Scholar 

  29. Karakas, S., Erzengin, O. U., and Basar, E., The genesis of human event-related responses explained through the theory of oscillatory neural assemblies. Neurosci. Lett. 285:45–48, 2000.

    Article  Google Scholar 

  30. Klimesch, W., Doppelmayr, M., Schwaiger, J., Winkler, T., and Gruber, W., Theta oscillations and the ERP old/new effect: independent phenomena? Clin. Neurophysiol. 111:781–793, 2000.

    Article  Google Scholar 

  31. Pang, C. C. C., Upton, A. R. M., Shine, G., and Kamath, M. V., A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans. Biomed. Eng. 50(4):521–526, 2003.

    Article  Google Scholar 

  32. Ambach, W., Bursch, S., Stark, R., and Vaitl, D., A Concealed Information Test with multimodal measurement. Int. J. Psychophysiol. 75:258–267, 2010.

    Article  Google Scholar 

  33. Verschuere, B., Crombez, G., De Clercq, A., and Koster, E. H., Autonomic and behavioral responding to concealed information: differentiating orienting and defensive response. Psychophysiology 41:461–466, 2004.

    Article  Google Scholar 

  34. Gronau, N., Ben-Shakhar, G., and Cohen, A., Behavioral and physiological measures in the detection of concealed information. J. Appl. Psychol. 90:147–158, 2005.

    Article  Google Scholar 

  35. Johnson, R. J., Barnhardt, J., and Zhu, J., The deceptive response: effects of response conflict and strategic monitoring on the late positive component and episodic memory-related brain activity. Biol. Psychol. 64:217–253, 2003.

    Article  Google Scholar 

  36. Demiralp, T., and Ademoglu, A., Decomposition of event-related brain potentials into multiple functional components using wavelet transform. Clin. Electroencephalogr. 32:122–138, 2001.

    Google Scholar 

  37. Muller, K., Anderson, C. W., and Birch, G. E., Linear and nonlinear methods for brain computer inter faces. IEEE Trans. Neural Syst. Rehabil. Eng. 11:165–169, 2003.

    Article  Google Scholar 

  38. Begg, R. K., and Kamruzzaman, J., A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J. Biomech. 38:401–408, 2005.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by National Science Foundation of China under grant No.30870654

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., Zheng, C. & Zhao, C. A New Approach for Concealed Information Identification Based on ERP Assessment. J Med Syst 36, 2401–2409 (2012). https://doi.org/10.1007/s10916-011-9707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-011-9707-0

Keywords

Navigation