Skip to main content
Log in

Neural Network Approaches to Grade Adult Depression

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Depression is a common but worrying psychological disorder that adversely affects one’s quality of life. It is more ominous to note that its incidence is increasing. On the other hand, screening and grading of depression is still a manual and time consuming process that might be biased. In addition, grades of depression are often determined in continuous ranges, e.g., ‘mild to moderate’ and ‘moderate to severe’ instead of making them more discrete as ‘mild’, ‘moderate’, and ‘severe’. Grading as a continuous range is confusing to the doctors and thus affecting the management plan at large. Given this practical issue, the present paper attempts to differentiate depression grades more accurately using two neural net learning approaches—‘supervised’, i.e., classification with Back propagation neural network (BPNN) and Adaptive Network-based Fuzzy Inference System (ANFIS) classifiers, and ‘unsupervised’, i.e., ‘clustering’ technique with Self-organizing map (SOM), built in MATLAB 7. The reason for using the supervised and unsupervised learning approaches is that, supervised learning depends exclusively on domain knowledge. Supervision may induce biasness and subjectivities related to the decision-making. Finally, the performance of BPNN and ANFIS are compared and discussed. It was observed that ANFIS, being a hybrid system, performed much better compared to the BPNN classifier. On the other hand, SOM-based clustering technique is also found useful in constructing three distinct clusters. It also assists visualizing the multidimensional data clusters into 2-D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gotlib, I. H., and Hammen, C. L., Psychological aspects of depression: Toward a cognitive-interpersonal integration, vol. xi. John Wiley & Sons, Oxford, England, pp. 330, 1992. The Wiley series in clinical psychology.

    Google Scholar 

  2. http://www.who.int/topics/depression/en/

  3. Keller, M. B., Depression: a long-term illness. Br. J. Psychiatry 26:9–15, 1994.

    Google Scholar 

  4. Kaplan, H. I., Saddock, B. J., and Greb, J. A., Synopsis of Psychiatry, Behavioural Science and Clinical Psychiatry. B I Waverly Pvt. Ltd, New Delhi India, pp. 803–823, 1994.

    Google Scholar 

  5. Hamilton, M., A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 23:56–62, 1960.

    Article  Google Scholar 

  6. Zung, W. W. K., The depression status inventory: An adjunct to the self-rating depression scale. J. Clin. Psychol. 28(4):539–543, 1972.

    Article  Google Scholar 

  7. Beck, A. T., & Alford, B. A., Depression: Causes and Treatment, 2nd Edition. University of Pennsylvania Press, 2008.

  8. Bagby, R. M., Andrew, G. R., Deborah, R. S., and Marshall, M. B., The Hamilton Depression Rating Scale. Am. J. Psychiatry 161:2163–177, 2004.

    Article  Google Scholar 

  9. Chen, H., Fuller, S. S., Friedman, C., and Hersh, W., Knowledge management, Data mining, and Text mining in Medical informatics. In: Chen, H., Fuller, S. S., Friedman, C., and Hersh, W. (Eds.), Medical informatics Knowledge management and Data mining in Biomedicine. Springer’s Integrated Series in Information Systems, NY USA, pp. 4–30, 2005.

    Google Scholar 

  10. Kohonen, T., Self organizing maps. Springer Verlag, Berlin, 1995.

    Book  Google Scholar 

  11. Astion, M. L., and Wilding, P., The application of backpropagation neural networks to problems in pathology and laboratory medicine. Arch. Pathol. Lab. Med. 116(10):995–1001, 1992.

    Google Scholar 

  12. Wilding, P., Morgan, M. A., Grygotis, A. E., Shoffner, M. A., and Rosato, E. F., Application of backpropagation neural networks to diagnosis of breast and ovarian cancer. US National Library of Medicine 77(2–3):145–53, 1994.

    Google Scholar 

  13. Cho, J. M., Chromosome classification using backpropagation neural networks. IEEE 19(1):28–33, 2000.

    Google Scholar 

  14. Guler, I., and Ubeyli, E. D., Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network. Engineering Applications of Artificial Intelligence 18(4):413–422, 2003.

    Article  Google Scholar 

  15. Aruna, P., Puviarasan, N., and Palaniappan, B., An investigation of neurofuzzy system in psychosomatic disorders. Exp. Syst. Appl. 28(4):673–679, 2005.

    Article  Google Scholar 

  16. Aruna, P., Puviarasan, N., and Palaniappan, B., Neuro-Fuzzy model for diagnosis of gastrointestinal disorders, in proc. of 5th International Conference on Neural Networks & Expert Systems in Medicine & Healthcare & 1st International Conference on Computational Intelligence in Medicine & Healthcare, Sheffield Hallam University, England, 2003.

  17. Tu, J. V., Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49:1225–1231, 1996.

    Article  Google Scholar 

  18. Bhatikar, S. R., DeGroff, C., and Mahajan, R. L., A classifier based on the artificial neural networks for cardiologic auscultation in pediatrics. Artif. Intell. Med. 33(3):251–60, 2004.

    Article  Google Scholar 

  19. Li, Y., Liu, L., Chiu, W., and Jian, W., Neural Network modeling for surgical decisions on traumatic brain injury patients. Int. J. Med. Inform. 57(1):1–9, 2000.

    Article  Google Scholar 

  20. Magnotta, V. A., Andreasen, N. C., Heckel, D., Cizadlo, T., Corson, P. W., Ehrhardt, J. C., and Yuh, W. T. C., Measurement of Brain Structures with Artificial Neural Networks: Two and three dimensional applications. Radiology 211:781–90, 1999.

    Google Scholar 

  21. Pradhan, N., Sadasivan, P. K., and Arunodaya, G. R., Detection of seizure activity in EEG by an Artificial Neural Network: A preliminary study. Comput. Biomed. Res. 29(4):303–13, 1999.

    Article  Google Scholar 

  22. Zou, Y., Shen, Y., Shu, L., Wang, Y., Feng, F., Xu, K., Ou, Y., Song, Y., Zhong, Y., Wang, M., and Liu, W., Artificial Neural Network to assist psychiatric diagnosis. Br J Psych 169:64–67, 1996.

    Article  Google Scholar 

  23. Davis, G. E., Lowell, W. E., and Davis, G. L., A Neural Network that predicts psychiatric length of stay. MD Comput 10(2):87–92, 1993.

    Google Scholar 

  24. Chattopadhyay, S., Kaur, P., Rabhi, F., Acharya, U. R., An Automated System to Diagnose the Severity of Adult Depression. In Jana D, Pal P (Eds.), the proceedings of 2nd International conference on Emerging Areas of IT, pp. 121–124, 2011.

  25. Chattopadhyay, S., Kaur, P., Rabhi, F., Acharya, U. R., Automatic Grading of Adult Depression using a Back Propagation Neural Net Classifier. In Advances in Data mining in Biomedical signalling, Imaging, and Systems by Dua S. and Acharya U.R (Eds.). CRC Press, USA. (Accepted 2010; in press).

  26. Jang, J. S. R., ANFIS—Adaptive—Network—based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 23(3):665–685, 1993.

    Article  Google Scholar 

  27. Vieira, J., Dias, F. M., Mota, A., Neuro—Fuzzy Systems: A Survey, 5th WSEAS NNA International Conference, 2004.

  28. Zadeh, L. A., Fuzzy Sets. Inform. Control 8:338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  29. Phuong, N. H., and Kreinovich, V., Fuzzy Logic and Its Applications in Medicine. I. J. Med. Informatics 62(2):165–173, 2001.

    Article  Google Scholar 

  30. Arzi, M., and Magnin, M., A fuzzy set theoretical approach to automatic analysis of nystagmic eye movements. IEEE Trans Biomed. Eng. 36(9):954–963, 1989.

    Article  Google Scholar 

  31. Grant, P., A New Approach to Diabetic Control: Fuzzy logic and Insulin Pump Technology. Med Eng Phys 29(7):824–827, 2007.

    Article  Google Scholar 

  32. Watanabe, H., Yakowenko, W. J., Kim, Y.-M., Anbe, J., and Tobi, T., Application of a fuzzy discrimination analysis for diagnosis of valvular heart disease. IEEE T. Fuzzy Syst. 2(4):267–276, 1994.

    Article  Google Scholar 

  33. Kovalerchuk, B., Triantaphyllou, E., Ruiz, J. F., and Clayton, J., Fuzzy Logic in Computer-Aided Breast Cancer Diagnosis: Analysis of Lobulation. Artif. Intell. Med. 11(1):75–885, 1997.

    Article  Google Scholar 

  34. Schineider, J., Bitterlich, N., and Schulze, G., Improved Sensitivity in the Diagnosis of Gastro-Intestinal Tumors by Fuzzy Logic based Tumor Marker Profiles including the Tumor M2-PK. International Journal of Cancer Research and Treatment 25(3):1507–1515, 2005.

    Google Scholar 

  35. Presedo, J., Vila, J., Delgado, M., Barro, S., Palacios, F., and Ruiz, R., A Proposal for the Fuzzy Evaluation of Ischaemic Episodes. Comput Cardio, 709–712, 1995.

  36. McBurnie, K, Kwiatkowska, M., Matthews, L., and D’Anguiulli, A., A Multi-Factor Model for the Assessment of Depression Associated with Obstructive Sleep Apnea: A Fuzzy Logic Approach. Annual Meeting of the North American Fuzzy Information Processing Society, pp. 301–306, 2007.

  37. Yu, S.-C., and Lin, Y.-H., Applications of Fuzzy Theory on Health Care: An Example of Depression Disorder Classification Based on FCM. WSEAS Transactions on Information Science & Applications 5(1):31–36, 2008.

    Google Scholar 

  38. Chattopadhyay, S., Pratihar, D. K., and De Sarkar, S. C., Statistical Modelling of Psychoses Data. Comput. Methods Programs Biomed. 100(3):222–236, 2010.

    Article  Google Scholar 

  39. Chattopadhyay, S., Pratihar, D. K., and De Sarkar, S. C., Fuzzy Logic-based Screening and Prediction of Adult Psychoses: A Novel Approach. IEEE T. Syst. Man Cy A 39(2):381–387, 2009.

    Article  Google Scholar 

  40. Chattopadhyay, S., Pratihar, D. K., and De Sarkar, S. C., Developing Fuzzy Classifiers to Predict the Chance of Occurrence of Adult Psychoses. Knowledge-based Systems 20:479–497, 2008.

    Article  Google Scholar 

  41. Chattopadhyay, S., Pratihar, D. K., and De Sarkar, S. C., Some Studies on Fuzzy clustering of psychosis data. International Journal of Business Intelligence and Data Mining 2(2):143–159, 2007.

    Article  Google Scholar 

  42. Takagi, T., and Sugeno, M., Fuzzy identifiation of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics—Part C (SMC-15): 116–132, 1985.

  43. Manish, K., Hakan, N., Aarup, L R, Nottrup, T. J., Olsen, D. R., Respiratory Motion Prediction by Using the ANFIS. Phys. Med. Biol. 50(19), 2005.

  44. Magenes, G., Signorini, M. G., and Sassi, R., Automatic Diagnosis of Fetal Heart Rate: Comparison of Different Methodological Approaches. Proceedings of the 23 rd Annual International Conference of Engineering in Medicine and Biology Society IEEE, 2:1604–1607, 2001.

  45. Forouzanfar, M., Dajani, H. R., Groza, V. Z., Bolic, M., Rajan, S., ANFIS for Oscillometric Blood Pressure Estimation. IEEE International Workshop on Medical Measurements and Applications Proceedings, pp. 125–129, 2010.

  46. Vosoulipour, A, Teshnehlab M, and Moghadam, H. A., Classification on Diabetes Mellitus Data-set Based on ANN and ANFIS. Proceedings of 4th Kala Lumpur International Conference on Biomedical Engineering, pp. 27–30, 2008.

  47. Ozkan, A. O., Sadik, K., Salli, A., Sakarya, M. E., and Gunes, S., Medical Diagnosis of Rheumatoid Arthritis Disease from Right and Left Hand Ulnar Artery Doppler Signals using ANFIS and MUSIC Methods. Adv Eng Softw 41(12):1295–1301, 2010.

    Article  Google Scholar 

  48. Kannathal, N., Lim, C. M., Acharya, U. R., and Sadasivan, P. K., Cardiac state diagnosis using adaptive neuro fuzzy technique. Med Eng Phys 28:809–815, 2006.

    Article  Google Scholar 

  49. Vatankhah, M., and Yaghubi, M., ANFIS for Classification of EEG Signals using Fractal Dimension, 3rd UKSIM European Symposium on Computer Modeling and Simulation: pp. 214–218, 2009.

  50. Noor, N. M., Khalid, N. E. A., Hassan, R., Ibrahim, S., Yassin, I. M., ANFIS for Brain Abnormality Segmentation, Control and System Graduate Research Colloquium IEEE: pp. 68–70, 2010.

  51. Kannathal, N., Lim, C. M., Acharya, U. R., and Sadasivan, P. K., Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80:187–194, 2005.

    Article  Google Scholar 

  52. Kohonen, T., Self Organizing Maps. Proc IEEE 78(9):1464–80, 1990.

    Article  Google Scholar 

  53. Ball, H. A., McGuffin, P., and Farmer, A. E., Attributional style and depression. Br. J. Psychiatry 192:275–278, 2008.

    Article  Google Scholar 

  54. Austin, M. P., Mitchell, P., and Goodwin, G. M., Cognitive deficits in depression: Possible implications for functional neuropathology. Br. J. Psychiatry 178:200–206, 2001.

    Article  Google Scholar 

  55. Forsell, Y., Jorm, A. F., and Winblad, B., Association of age, sex, cognitive dysfunction, and disability with major depressive symptoms in an elderly sample. Am. J. Psychiatry 151:1600–1604, 1994.

    Google Scholar 

  56. Cronbach, L. J., Coefficient alpha and the internal structure of tests. Psychometrika 16:297–334, 1951.

    Article  Google Scholar 

  57. Fisher, R. A. The use of multiple measurements in axonomic problems. Annals of Eugenics 7:179–188, 1936.

    Google Scholar 

  58. Han, J., and Kamber, M., Data Mining Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, California USA, pp. 327–36, 2006.

    MATH  Google Scholar 

  59. Chiu, S., Fuzzy Model Identification Based on Cluster Estimation. J. Int. Fuzzy Syst. 2(3):267–268, 1994.

    Google Scholar 

  60. Shing, J., and Jang, R., ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 23(3):665–85, 1993.

    Article  Google Scholar 

  61. Jolliffe, I. T., Principal Component Analysis. Springer-Verlag Heidelberg, Germany, 1986.

    Google Scholar 

  62. Nunnaly, J., Psychometric theory. McGraw-Hill, New York, 1978.

    Google Scholar 

  63. Gliem, J. A., Gliem, R. R., Calculating, Interpreting and Reporting Cronbac’s Alpha Reliability Coefficient for Likert-Type Scales. In the proceedings of Midwest Research-to-Practice Conference in Adult, Continuing and Community Education, pp. 45–48, 2003.

Download references

Acknowledgement

Authors gratefully acknowledge the psychologists and psychiatrist colleagues who had helped in collecting depression data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhagata Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, S., Kaur, P., Rabhi, F. et al. Neural Network Approaches to Grade Adult Depression. J Med Syst 36, 2803–2815 (2012). https://doi.org/10.1007/s10916-011-9759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-011-9759-1

Keywords

Navigation