Skip to main content

Advertisement

Log in

An Expert Support System for Breast Cancer Diagnosis using Color Wavelet Features

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Breast cancer diagnosis can be done through the pathologic assessments of breast tissue samples such as core needle biopsy technique. The result of analysis on this sample by pathologist is crucial for breast cancer patient. In this paper, nucleus of tissue samples are investigated after decomposition by means of the Log-Gabor wavelet on HSV color domain and an algorithm is developed to compute the color wavelet features. These features are used for breast cancer diagnosis using Support Vector Machine (SVM) classifier algorithm. The ability of properly trained SVM is to correctly classify patterns and make them particularly suitable for use in an expert system that aids in the diagnosis of cancer tissue samples. The results are compared with other multivariate classifiers such as Naïves Bayes classifier and Artificial Neural Network. The overall accuracy of the proposed method using SVM classifier will be further useful for automation in cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. IARC, World cancer report-2008. International Agency for Research on Cancer, Lyon, 2008.

  2. Hayat, M. A., Cancer imaging, vol. 1 lung and breast carcinomas. Elsevier Academic Press, USA, 2008.

    Google Scholar 

  3. Kumar, V., Cotran, R. S., and Robbins, S. L., Robbins basic pathology, 7th edition. Elsevier Saunders, Philadelphia, 2003.

    Google Scholar 

  4. Stenkvist, B., Westman Naeser, S., Holmquist, J., Nordin, B., Bengtsson, E., Vegelius, J., Eriksson, O., and Fox, C. H., Computerized nuclear morphometry as an objective method for characterizing human cancer cell populations. Cancer Res. 38:4688–4697, 1978.

    Google Scholar 

  5. Stenkvist, B., Bengtsson, E., Eriksson, O., Jarkrans, T., and Nordin, B., Image cytometry in malignancy grading of breast cancer. Results in a prospective study with seven years of follow-up. Anal. Quant. Cytol. Histol. 8:293–300, 1986.

    Google Scholar 

  6. Bengtsson, E., The measuring of cell features. Anal. Quant. Cytol. Histol. 9:212–217, 1987.

    Google Scholar 

  7. Choi, H. K., Vasko, J., Bengtsson, E., Jarkrans, T., Malmström, P. U., Wester, K., and Busch, C., Grading of transitional cell bladder carcinoma by texture analysis of histological sections. Anal. Cell. Pathol. 6:327–343, 1994.

    Google Scholar 

  8. Mattfeldt, T., Gottfried, H., Schmidt, V., and Kestler, H., Classification of spatial textures in benign and cancerous glandular tissues by stereology and stochastic geometry using artificial neural networks. J. Microsc. 198(2):143–158, 2000. doi:10.1111/j.1365-2818.2000.00689.x.

    Article  Google Scholar 

  9. Street, W. N., Xcyt: A system for remote cytological diagnosis and prognosis of breast cancer. In: Jain, L. C. (Ed.), Soft computing techniques in breast cancer prognosis and diagnosis. World Scientific Publishing, Singapore, pp. 297–322, 2000.

    Chapter  Google Scholar 

  10. Gil, J., Wu, H., and Wang, B., Image analysis and morphometry in the diagnosis of breast cancer. Microsc. Res. Tech. 59(2):109–118, 2002. doi:10.1002/jemt.10182.

    Article  Google Scholar 

  11. Wolberg, W. H., and Street, W. N., Computer-generated nuclear features compared to axillary lymph node status and tumor size as indicators of breast cancer survival. Hum. Pathol. 33(11):1086–1091, 2002. doi:10.1053/hupa.2002.129198.

    Article  Google Scholar 

  12. Klorin, G., and Keren, R., Ploidy and nuclear area as a predictive factor of histologic grade in primary breast cancer. Anal. Quant. Cytol. Histol. 25(5):277–280, 2003.

    Google Scholar 

  13. Rodenacker, K., and Bengtsson, E., A feature set for cytometry on digitized microscopic images. Anal. Cell. Pathol. 25:1–36, 2003. doi:10.1.1.33.9697.

    Google Scholar 

  14. Bengtsson, E., Computerized cell image analysis: Past, present and future. Proc of SCIA. Bigun J, Gustavsson T (ed) Springer LNCS 2749, pp 395–407, 2003.

  15. Bengtsson, E., Computerized Cell Image Processing in Healthcare. Proc Healthcom-2005, pp 11–17. doi:10.1109/HEALTH.2005.1500372, 2005.

  16. Gurcan, M. N., Boucheron, L. E., Can, A., Madabhushi, A., Rajpoot, N. M., and Yener, B., Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2:147–171, 2009. doi:10.1109/RBME.2009.2034865.

    Article  Google Scholar 

  17. Jafari Khouzani, K., and Soltanian Zadeh, H., Multiwavelet grading of pathological images of prostate. IEEE Trans. Biomed. Eng. 50:697–704, 2003. doi:10.1109/TBME.2003.812194.

    Article  Google Scholar 

  18. Tabesh, A., Teverovskiy, M., Pang, H. Y., Kumar, V. P., Verbel, D., Kotsianti, A., and Saidi, O., Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans. Med. Imaging 26:1366–1378, 2007. doi:10.1109/TMI.2007.898536.

    Article  Google Scholar 

  19. Demir, C., and Yener, B., Automated cancer diagnosis based on histopathological images: a systematic survey. Rensselaer Polytechnic Institute, CS Tech Rep TR-05-09, 2005.

  20. Keenan, S., Diamond, J., Glenn McCluggage, W., Bharucha, H., Thompson, D., Bartels, P., and Hamilton, P., An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN). J. Pathol. 192(3):351–362, 2000. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH708>3.0.CO;2-I.

    Article  Google Scholar 

  21. Muthu Rama Krishnan, M., Shah, P., Choudhary, A., Chakraborty, C., Paul, R. R., and Ray, A. K., Textural characterization of histopathological images for oral sub-mucous fibrosis detection. Tissue and Cell, 2011. doi:10.1016/j.tice.2011.06.005.

  22. Van de Wouwer, G., Weyn, B., Scheunders, P., Jacob, W., and Van Marck, E., Wavelets as chromatin texture descriptors for the automated identification of neoplastic nuclei. J. Microsc. 197(1):25–35, 2000. doi:10.1046/j.1365-2818.2000.00594.x.

    Article  Google Scholar 

  23. Weyn, B., van de Wouwer, G., Kumar-Singh, S., van Daele, A., Scheunders, P., van Marck, E., and Jacob, W., Computer-assisted differential diagnosis of malignant mesothelioma based on syntactic structure analysis. Cytometry 35:23–29, 1999. doi:10.1002/(SICI)1097-0320(19990101)35:1<23::AID-CYTO4>3.0.CO;2-P10.

    Article  Google Scholar 

  24. Esgiar, A. N., Naguib, R. N., Sharif, B. S., Bennett, M. K., and Murray, A., Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa. IEEE Trans. Inf. Technol. Biomed. 2:197–203, 1998. doi:10.1109/4233.735785.

    Article  Google Scholar 

  25. Spyridonos, P., Ravazoula, P., Cavouras, D., and Nikiforidis, G., An automatic classification system of urine bladder tumors employing morphological and textural nuclear features. Proc of Intl. Conf. on Image Processing. pp 853–856. doi:10.1109/ICIP.2001.958628, 2001.

  26. Ster, B., and Dobnikar, A., Neural networks in medical diagnosis: Comparison with other methods. (In) Proc of Int Conf on Engg Appln of Neural Networks (EANN’96) pp 427–430, 1996.

  27. Nauck, D., and Kruse, R., Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16:149–169, 1999. doi:10.1016/S0933-3657(98)00070-0.

    Article  Google Scholar 

  28. Bennet, K. P., and Blue, J. A., A support vector machine approach to decision trees. Math Report Rensselaer Polytechnic Institute, 1997.

  29. Pena Reyes, C. A., and Sipper, M., A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17:131–155, 1999. doi:0.1.1.21.7030.

    Article  Google Scholar 

  30. Abonyi, J., and Szeifert, F., Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn. Lett. 24:2195–2207, 2003. doi:10.1.1.107.9469.

    Article  MATH  Google Scholar 

  31. Setiono, R., Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18:205–219, 2000. doi:10.1.1.64.6698.

    Article  Google Scholar 

  32. Weyn, B., et al., Automated breast tumor diagnosis and grading based on wavelet chromatin texture description. Cytometry 33(1):32–40, 1998. doi:10.1002/(SICI)1097-0320(19980901)33:1<32::AID-CYTO4>3.0.CO;2-D.

    Article  Google Scholar 

  33. Li, J., Mohamed, S. S., Salama, M. M. A., and Freeman, G. H., Prostate tissue texture feature extraction for cancer recognition in TRUS images using Wavelet decomposition. (In) LNCS 4633, pp 993–1004. doi:10.1007/978-3-540-74260-9_88, 2007.

  34. Celik, T., and Tjahjadi, T., Multiscale texture classification using dual-tree complex wavelet transform. Pattern Recogn. Lett. 30:331–339, 2009. doi:10.1016/j.patrec.2008.10.006.

    Article  Google Scholar 

  35. Khare, A., and Tiwary, U. S., Daubechies complex wavelet transform based moving object tracking. Proc IEEE Symposium on Computational Intelligence in Image and Signal Processing pp 36–40. doi:10.1109/CIISP.2007.369290, 2007.

  36. Khare, A., and Tiwary, U. S., Daubechies complex wavelet transform based technique for denoising of medical images. Int. J. Image Graph. 7(4):663–687, 2007. doi:10.1.1.87.8237.

    Article  Google Scholar 

  37. Fischer, S., Cristóbal, G., and Redondo, R., Sparse over complete Gabor wavelet representation based on local competitions. IEEE Trans. Image Process. 15:265–272, 2006. doi:10.1109/TIP.2005.860614.

    Article  Google Scholar 

  38. Fischer, S., Sroubek, F., Perrinet, L., Redondo, R., and Cristóbal, G., Self invertible Gabor wavelets. Int. J. Comput. Vis. 75:231–246, 2007. doi:10.1007/s11263-006-0026-8.

    Article  Google Scholar 

  39. Fischer, S., Redondo, R., and Cristobal, G., How to construct Log-Gabor filters. Open Access Digital CSIC Document, 2009.

  40. Horobin, R. W., and Kiernan, J. A., Conn’s Biological Stains. A Handbook of dyes stains and fluorochromes for use in Biology and Medicine. 10th edn. Oxford: BIOS, 2002.

  41. Aperio digital pathology documentation, Aperio digital slides file types. http://www.aperio.com/documents/api/Aperio_Digital_Slides_and_Third-party_data_interchange.pdf Accessed 20 Jan 2011, 2010.

  42. Demirkaya, O., Asyali, M. H., and Sahoo, P. K., Image processing with MATLAB-Application in Medicine and Biology. CRC Press. Taylor & Francis Group, Boca Raton, 2008.

    Google Scholar 

  43. Recky, M., and Leberl, F., Windows Detection Using K-means in CIE-Lab Color Space. Proc 20th Intl. Conf. on Pattern Recognition (ICPR) pp 356–359 doi:10.1109/ICPR.2010.96, 2010.

  44. Jeong, H., Kim, T. Y., Hwang, H. G., and Choi, H. J., Comparison of thresholding methods for breast tumor cell segmentation. In: Proc. of 7th Int. Workshop on Enterprise networking and computing in Healthcare Industry, pp. 392–395. doi:10.1109/HEALTH.2005.1500489, 2005.

  45. Schnorrenberg, F., Comparison of manual and computer-aided breast cancer biopsy grading. In: Proc. IEEE EMBS’96, 18th Annu. Int. Conf. doi:10.1.1.49.771, 1996.

  46. Adawi, M. E., Shehab, Z., Keshk, H., and Shourbagy, M. E., A fast algorithm for segmentation of microscopic cell images. Proc 4th Intl. conf. on Information & Comm Tech, doi:10.1.1.100.762, 2006.

  47. Petushi, S., Garcia, F. U., Haber, M. M., Katsinis, C., and Tozeren, A., Large-scale computations on histology images reveal grade differentiating parameters for breast cancer. BMC Medical Imaging 6(14). doi:10.1186/1471-2342-6-14, 2006.

  48. Tuceryan, M., and Jain, A. K., Texture analysis. In: The Handbook of Pattern Recognition and Computer Vision, 2nd edn. World Scientific Publishing, Singapore, pp. 207–248. doi:10.1.1.38.5980, 1998.

  49. Chen, C., Ozolek, J. A., Wang, W., and Rohde, G. K., A general system for automatic biomedical image segmentation using intensity neighborhoods. Int. J. Biomed. Imag., 2011. doi:10.1155/2011/606857.

  50. Mirmehdi, M., and Petrou, M., Segmentation of color textures. IEEE Trans. Pattern Anal. Mach. Intell. 22:142–159, 2000. doi:10.1109/34.825753.

    Article  Google Scholar 

  51. Palm, C., Keysers, D., and Spitzer, K., Gabor filtering of complex hue/saturation images for color texture classification. Proc Joint Conf. Information Sciences Intl. Conf. Comput Vision, Pattern Recognition and Image Processing 2:45–49. doi:10.1.1.32.6979, 2000.

  52. Gonzalez, R. C., and Woods, R. E., Digital image processing. Pearson Education Inc, New Delhi, 2008.

    Google Scholar 

  53. Dubuisson Jolly, M. P., and Gupta, A., Color and texture fusion: Application to aerial image segmentation and GIS updating. Image Vis. Comput. 18:823–832, 2000. doi:10.1.1.21.990.

    Article  Google Scholar 

  54. Drimbarean, A., and Whelan, P. F., Experiments in color texture analysis. Pattern Recogn. Lett. 22:1161–1167, 2001. doi:10.1016/S0167-8655(01)00058-7.

    Article  MATH  Google Scholar 

  55. Karkanis, S. A., Iakovidis, D. K., Karras, D. A., and Tzivras, M., Computer-aided tumor detection in endoscopic video using color Wavelet features. IEEE Trans. Inform. Tech. Biomed. 7(3):141–152, 2003. doi:10.1.1.9.8750.

    Article  Google Scholar 

  56. Karkanis, S. A., Iakovidis, D. K., Karras, D. A., and Maroulis, D. E., Detection of lesions in endoscopic video using textural descriptors on wavelet domain supported by artificial neural network architectures. Proc IEEE ICIP, pp. 833–836. doi:10.1.1.20.5858, 2001.

  57. Smith, A. R., Color Gamut Transform Pairs Computer Graphics. In: Proc of Conference SIGGRAPH 78, 12(3):12–19. Reprinted in Tutorial (1982) Computer Graphics. John C Beatty and Kellogg S Booth (ed) IEEE Computer Society Press. Silver Spring, MD, 2nd edn. pp 376–383. doi:10.1145/800248.807361, 1978.

  58. Fan, L., Duan, H., Face, F. L., Face Recognition by Subspace Analysis of 2D Log-Gabor Wavelets Features. Proc 3rd Intl. Conf. on Intelligent System and Knowledge Engineering 1:1167–1172. doi:10.1109/ISKE.2008.4731107, 2008.

  59. Field, D. J., Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4(12):2379–2394, 1987. doi:10.1.1.136.1345.

    Article  Google Scholar 

  60. Xiao, Z. T., Guo, C. M., Yu, M., et al., A new aligned with human visual system characteristics wavelet and its application. Signal Process. 18(5):399–402, 2002. doi:CNKI:SUN:XXCN.0.2002-05-002.

    Google Scholar 

  61. Li, N., and Xu, D., 2D Log-Gabor Wavelet based action recognition. IEICE Trans. Inf. Syst. E92.D(11):2275–2278, 2009. doi:10.1587/transinf.E92.D.2275.

    Article  Google Scholar 

  62. Arivazhagan, S., Ganesan, L., and Angayarkanni, V., Color texture classification using wavelet transform. Proc 6th Intl. Conf. on Computational Intelligence and Multimedia Applications, pp 315–320. doi:10.1016/S0167-8655(02)00390-2, 2005.

  63. Haralick, R. M., Statistical and structural approaches to texture. Proc. IEEE 67:786–804, 1979. doi:10.1109/PROC.1979.11328.

    Article  Google Scholar 

  64. Haralick, R. M., Shanmugam, K., and Dinstein, I., Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621. doi:10.1109/TSMC.1973.4309314, 1973.

    Google Scholar 

  65. Haralick, R. M., Handbook of Pattern Recognition and Image Processing. Academic Press Inc, 1986.

  66. Kondepudy, R., and Healey, G., Modeling and identifying 3-D color textures. Proc Int. Conf. Comput. Vision Pattern Recognition, pp 577–582. doi:10.1109/CVPR.1993.341072, 1993.

  67. Scharcanski, J., Hovis, J. H., and Shen, H. C., Representing the color aspects of texture images. Pattern Recogn. Lett. 15:191–197, 1994. doi:10.1016/0167-8655(94)90048-5.

    Article  MATH  Google Scholar 

  68. Paschos, G., Fast color texture recognition using chromaticity moments. Pattern Recogn. Lett. 21:847–841, 2000. doi:10.1016/S0167-8655(00)00043-X.

    Article  Google Scholar 

  69. Li, C. H., Regularized color clustering in medical image database. IEEE Trans. Med. Imag. 19:1150–1155, 2000. doi:10.1109/42.896791.

    Article  Google Scholar 

  70. Manthalkar, R., Biswas, P. K., and Chatterji, B. N., Rotation invariant color texture classification in perceptually uniform color spaces. Proc of III Indian Conf. on Computer Vision, Graphics and Image Processing. doi:10.1.1.12.1268, 2002.

  71. Rajadell, O., and García-Sevilla, P., Influence of color spaces over texture characterization. Res. Comput. Sci. 38:273–281, 2008.

    Google Scholar 

  72. Hiremath, P. S., Shivashankar, S., and Pujari, J., Wavelet based features for color texture classification with application to CBIR. Int. J. Comput. Sci. Netw. Secur. 6(9A):124–133, 2006.

    Google Scholar 

  73. Vadivel, A., Sural, S., and Majumdar, A. K., Color-texture feature extraction using soft decision from the HSV color space. Proc Intl. Symp. on Intelligent Multimedia Processing pp 161–164. doi:10.1.1.97.8136, 2004.

  74. Vadivel, A., Sural, S., and Majumdar, A. K., Human color perception in the HSV space and its application in histogram generation for image retrieval. Proc. SPIE 5667:598–609, 2005. doi:10.1117/12.586823.

    Article  Google Scholar 

  75. Vadivel, A., Sural, S., and Majumdar, A. K., An integrated color and intensity co-occurrence matrix. Pattern Recogn. Lett. 28(8):doi:10.1.1.133.6834, 2007.

    Article  Google Scholar 

  76. Bagc, U., Brayb, M., Cabanc, J., Yaod, J., and Molluraa, D. J., Computer-assisted detection of infectious lung diseases: A review. Comput. Med. Imag. Graph., 2011. doi:10.1016/j.compmedimag.2011.06.002.

  77. Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23((1)1):89–109, 2001. doi:10.1.1.96.184.

    Article  Google Scholar 

  78. Cheung, N., Machine Learning Techniques for Medical Analysis. Dissertation, University of Queensland, 2001.

  79. Huang, L. C., Hsu, S. Y., and Lin, E., A comparison of classification methods for predicting Chronic Fatigue Syndrome based on genetic data. Journal of Translational Medicine 7:81, 2009. doi:10.1186/1479-5876-7-81.

    Article  Google Scholar 

  80. Antkowiak, M., Artificial Neural Networks vs Support Vector Machines for Skin Diseases Recognition. Dissertation, Umea University, 2006

  81. Huang, P. W., and HaoLai, Y., Effective segmentation and classification for HCC biopsy images. Pattern Recogn. 43(4):1550–1563, 2010. doi:10.1016/j.patcog.2009.10.014.

    Article  Google Scholar 

  82. Kim, Y., Koo, I., Jung, B. H., Chung, B. C., and Lee, D., Multivariate classification of urine metabolome profiles for breast cancer diagnosis. BMC Bioinformatics 11(2):S4, 2010. doi:10.1186/1471-2105-11-S2-S4.

    Article  Google Scholar 

  83. Garcia, A., Vachier, C., and Vallée, J. P., Multivariate mathematical morphology and Bayesian classifier Application to colour and medical images, Image Processing: Algorithms and Systems. Proc. SPIE 6812:681203, 2008. doi:10.1117/12.767521.

    Article  Google Scholar 

  84. Llobet, R., Pérez-Cortés, J. C., Toselli, A. H., and Juan, A., Computer-aided detection of prostate cancer. Int. J. Med. Informat. 76:547–556, 2007. doi:10.1016/j.ijmedinf.2006.03.001.

    Article  Google Scholar 

  85. Pereira, F., Mitchell, T., and Botvinick, M., Machine learning classifiers and fMRI: A tutorial overview. NeuroImage 45:S199–S209, 2009. doi:10.1016/j.neuroimage.2008.11.007.

    Article  Google Scholar 

  86. Misaki, M., Kim, Y., Bandettini, P. A., and Kriegeskorte, N., Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage 53(1):103–18, 2010. doi:10.1016/j.neuroimage.2010.05.051.

    Article  Google Scholar 

  87. Gupta, S., Kumar, D., and Sharma, A., Data Mining Classification techniques applied for Breast cancer diagnosis and prognosis. Indian Journal of Computer Science and Engineering 2(2):188–193, 2011.

    Google Scholar 

  88. Bishop, C. M., Pattern recognition and machine learning. Springer, Berlin, 2007.

    Google Scholar 

  89. Vapnik, V., The nature of statistical learning theory. Springer, New York, 1995.

    MATH  Google Scholar 

  90. Suykens, J. A. K., and Vandewalle, J., Least squares support vector machine classifiers. Neural Process Lett. 9(3):293–300, 1999. doi:10.1.1.7.2877.

    Article  MathSciNet  Google Scholar 

  91. Ye, J., and Xiong, T., SVM versus Least Squares SVM. Journal of Machine Learning Research pp 644–651. doi:10.1.1.128.1103, 2007.

  92. Polat, K., and Gune, S., Breast cancer diagnosis using least square support vector machine. Digit. Signal Process. 17:694–701, 2007. doi:10.1016/j.dsp.2006.10.008.

    Article  Google Scholar 

  93. Least Squares Support Vector Machines (LS-SVM). http://www.esat.kuleuven.ac.be/sista/lssvmlab/, last accessed Jan. 2011.

  94. Antala, P., Fannesa, G., Timmermanb, D., Moreaua, Y., and De Moor, B., Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection. Artif. Intell. Med. 29:39–60, 2003. doi:10.1.1.4.4339.

    Article  Google Scholar 

  95. Sabino, D. M. U., Costa, L. F., Rizzatti, E. G., and Zago, M. A., A texture approach to leukocyte recognition. Real-Time Imaging 10:205–216. doi:10.1.1.58.1133, 2004.

    Google Scholar 

  96. Mahdi, A., Razali, A., and AlWakil, A., Comparison of fuzzy diagnosis with K-nearest neighbor and Naïve Bayes classifiers in disease diagnosis. Broad Research in Artificial Intelligence and Neuroscience 2(2):58–66, 2011.

    Google Scholar 

  97. Langley, P., and Sage, S., Tractable average-case analysis of Naïve Bayesian classifiers. Proc.16th Intl Conf on Machine Learning, pp 220–228. doi:10.1.1.43.3472, 1999.

  98. Rish, I., An empirical study of the Naïve Bayes classifier. Proc. of IJCAI workshop on Empirical Methods in AI, 2001.

  99. Ng, A. Y., and Jordan, M. I., On Discriminative vs. Generative Classifiers: A comparison of Logistic Regression and Naïve Bayes. Neural Information Processing Systems pp 41–848. doi:10.1.1.21.1187, 2002.

  100. Kukar, M., and Sajn, L., Improving probabilistic interpretation of medical diagnoses with multi-resolution image parameterization: A case study. AIME LNAI 5651:136–145, 2009. doi:10.1007/978-3-642-02976-9_18.

    Google Scholar 

  101. Starzacher, A., and Rinner, B., Embedded Realtime Feature Fusion based on ANN, SVM and NBC. Proc of 12th Intl. Conf. on Information Fusion Seattle. pp 482–489, 2009.

  102. Hopgood, A., Intelligent systems for engineers and scientists, 2nd edition. CRC Press, Boca Raton, 2000.

    Book  Google Scholar 

  103. Yegnanarayana, B., Artificial neural networks. Prentice-Hall of India, New Delhi, 1999.

    Google Scholar 

  104. Zhang, G. P., Neural networks for classification: A survey. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 30(4):451–462, 2000. doi:10.1109/5326.897072.

    Article  Google Scholar 

  105. Esugasini, S., Mashor, M. Y., Isa, N. A. M., and Othman, N. H., Performance Comparison for MLP Networks using various Back Propagation algorithms for breast cancer diagnosis. Knowledge-Based Intelligent Information and Engineering Systems LNCS 3682/2005, pp 123–130. doi:10.1007/11552451_17, 2005.

  106. Arora, S., Bhattacharjee, D., Nasipuri, M., Malik, L., Kundu, M., and Basu, D. K., Performance Comparison of SVM and ANN for Handwritten Devnagari Character Recognition. Int. J. Comput. Sci. 7((3)6):18–26, 2010.

    Google Scholar 

  107. Choudhary, R., Paliwal, J., and Jayas, D. S., Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images. Journal Biosystems Engg 330–337. doi:10.1016/j.biosystemseng.2007.11.013, 2007.

  108. Janghel, R. R., Anupam, S., Ritu, T., and Rahul, K., Breast cancer diagnosis using Artificial Neural Network models, Proc 3rd Intl. Conf. on Information Sciences and Interaction Sciences, pp 89–94. doi: 10.1109/ICICIS.2010.5534716, 2010.

  109. Isa, I. S., Saad, Z., Omar, S., Osman, M. K., Ahmad, K. A., and Sakim, H. A. M., Suitable MLP Network Activation Functions for Breast Cancer and Thyroid Disease Detection. Proc of 2nd Intl. Conf. on Computational Intelligence, Modeling and Simulation. pp 39–44. doi:10.1109/CIMSiM.2010.93, 2010.

  110. Shukla, A., Tiwari, R., and Kaur, P., Knowledge Based Approach for Diagnosis of Breast Cancer. Proc IEEE Intl. Conf. of Advance Computing. pp 6–12. doi:10.1109/IADCC.2009.4808971, 2009.

  111. Abdelaal, M. M. A., Sena, H. A., Farouq, M. W., and Salem, A. B. M., Using pattern recognition approach for providing second opinion of breast cancer diagnosis. Proc of 7th Intl. Conf. on Informatics and Systems. pp 1–7, 2010.

  112. Spyridonos, P., Cavouras, D., Ravazoula, P., and Nikiforidis, G., Neural network-based segmentation and classification system for automated grading of histologic sections of bladder carcinoma. Anal. Quant. Cytol. Histol. 24(6):317–24, 2002.

    Google Scholar 

  113. Isa, N. A. M., Hamid, N. H. A., Sakim, H. A. M., Mashor, M. Y., and Zamli, K. Z., Intelligent classification system for cancer data based on artificial neural network. Proc IEEE Conf. on Cybernetics and Intelligent Systems. pp 196–201. doi:10.1109/ICCIS.2004.1460411, 2004.

  114. Isa, N. A. M., Tan, K. L., Mashor, M. Y., and Ali, A. N., Intelligent Pre-Cancerous Screening System based on HRBF Neural Network. Proc Knowledge Management International Conference and Exhibition. pp 53–56, 2004.

  115. Isa, N. A. M., Tan, K. L., Mashor, M. Y., and Ali, A. N., Neural Network Based Cervical Cancer Classification Design. Proc Knowledge Management International Conference and Exhibition. pp 57–60, 2004.

Download references

Acknowledgement

The authors would like to thank the Government of Canada for the financial support through Commonwealth Scholarship 2010–11 for this research work. A partial financial support received from Saskatchewan Health Research Foundation (SHRF) Phase I project grant to the co-author Prof. WJ Zhang for his involvement in this project is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Issac Niwas.

Appendix A

Appendix A

First order statistical features: Some of the first order statistical features used for this study are Mean, Standard deviation, Skewness, Uniformity and Entropy using the standard expression derived in [6365] as follows;

$$ Mean\left( {{f_1}} \right) = \sum\limits_{{i = 0}}^{{N - 1}} {{z_i}} p\left( {{z_i}} \right) $$
(A.1)
$$ Standard\;deviation\left( {{f_2}} \right) = \sum\limits_{{i = 0}}^{{N - 1}} {{{\left( {{z_i} - {f_1}} \right)}^2}} p\left( {{z_i}} \right) $$
(A.2)
$$ Skewness\left( {{f_3}} \right) = \sum\limits_{{i = 0}}^{{N - 1}} {{{\left( {{z_i} - {f_1}} \right)}^3}} p\left( {{z_i}} \right) $$
(A.3)
$$ Uniformity\left( {{f_4}} \right) = \sum\limits_{{i = 0}}^{{L - 1}} {{p^2}\left( {{z_i}} \right)} $$
(A.4)
$$ Entropy\left( {{f_5}} \right) = - \sum\limits_{{i = 0}}^{{N - 1}} {p\left( {{z_i}} \right)} \;lo{g_2}p\left( {{z_i}} \right) $$
(A.5)

where, z i is a random variable indicating intensity, p(z) is the histogram of the intensity levels in a region, N is the number of possible intensity levels.

Second order statistical features: Gray level co-occurrence matrix (GLCM) method is used for extracting wavelet co-occurrence statistical features in this study. The matrices are constructed at a distance of d = 1 and for orientation θ given as , 45°, 90°, and 135°. The statistical parameters such as Contrast, Cluster prominence, Energy, Dissimilarity, Sum of squares: variance, Sum entropy and Difference entropy have taken for this study, amongst several statistical measures [6365] that derive from each color co-occurrence matrix.

$$ Contrast\left( {{f_6}} \right) = \sum\limits_{{i,j = 1}}^N {{C_{{i,j}}}} {\left( {i - j} \right)^2} $$
(A.6)
$$ Cluster\;Prominence\left( {{f_7}} \right) = \sum\limits_{{i,j = 1}}^N {{{\left( {\left( {i - {\mu_i}} \right) + \left( {j - {\mu_j}} \right)} \right)}^4}{C_{{i,j}}}} $$
(A.7)
$$ Energy\left( {{f_8}} \right) = \sum\limits_{{i,j = 1}}^N {C_{{i,j}}^2} $$
(A.8)
$$ Dissimilarity\left( {{f_9}} \right) = \sum\limits_{{i,j = 1}}^N {\left| {i - j} \right|{C_{{i,j}}}} $$
(A.9)
$$ Sum\;of\;squares:variance\left( {{f_{{10}}}} \right) = \sum\limits_{{i,j = 1}}^N {{{\left( {i - \mu } \right)}^2}{C_{{i,j}}}} $$
(A.10)
$$ Sum\;Entropy\left( {{f_{{11}}}} \right) = - \sum\limits_{{i = 2}}^{{2{N_g}}} {{C_{{x + y}}}(i)\log \left\{ {{C_{{x + y}}}(i)} \right\}} $$
(A.11)
$$ Difference\;Entropy\left( {{f_{{12}}}} \right) = - \sum\limits_{{i = 0}}^{{{N_g} - 1}} {{C_{{x - y}}}(i)\log \left\{ {{C_{{x - y}}}(i)} \right\}} $$
(A.12)

where, C i, j is the element [i, j] of the co-occurrence matrix, N g is the number of gray levels, μ is the mean, σ 2 is the variance of the intensities in the co-occurrence matrix, where x and y are the coordinates (row and column) of an array in the co-occurrence matrix, and C x+y is the probability of co-occurrence matrix coordinates summing to x+y where as C x-y is the probability of co-occurrence matrix coordinates differentiating to x-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issac Niwas, S., Palanisamy, P., Chibbar, R. et al. An Expert Support System for Breast Cancer Diagnosis using Color Wavelet Features. J Med Syst 36, 3091–3102 (2012). https://doi.org/10.1007/s10916-011-9788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-011-9788-9

Keywords

Navigation