Skip to main content

Advertisement

Log in

A Comparative Study on Classification of Sleep Stage Based on EEG Signals Using Feature Selection and Classification Algorithms

  • Research Article
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Sleep scoring is one of the most important diagnostic methods in psychiatry and neurology. Sleep staging is a time consuming and difficult task undertaken by sleep experts. This study aims to identify a method which would classify sleep stages automatically and with a high degree of accuracy and, in this manner, will assist sleep experts. This study consists of three stages: feature extraction, feature selection from EEG signals, and classification of these signals. In the feature extraction stage, it is used 20 attribute algorithms in four categories. 41 feature parameters were obtained from these algorithms. Feature selection is important in the elimination of irrelevant and redundant features and in this manner prediction accuracy is improved and computational overhead in classification is reduced. Effective feature selection algorithms such as minimum redundancy maximum relevance (mRMR); fast correlation based feature selection (FCBF); ReliefF; t-test; and Fisher score algorithms are preferred at the feature selection stage in selecting a set of features which best represent EEG signals. The features obtained are used as input parameters for the classification algorithms. At the classification stage, five different classification algorithms (random forest (RF); feed-forward neural network (FFNN); decision tree (DT); support vector machine (SVM); and radial basis function neural network (RBF)) classify the problem. The results, obtained from different classification algorithms, are provided so that a comparison can be made between computation times and accuracy rates. Finally, it is obtained 97.03 % classification accuracy using the proposed method. The results show that the proposed method indicate the ability to design a new intelligent assistance sleep scoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pan, S. T., Kuo, C. E., Zeng, J. H., and Liang, S. F., A transition-constrained discrete hidden Markov model for automatic sleep staging. BioMedical Eng OnLine. 11:52–71, 2012.

    Article  Google Scholar 

  2. Sen, B., and Peker, M., Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms. Turk. J. Electr. Eng. Comput. Sci. 21:2092–2109, 2013.

    Article  Google Scholar 

  3. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., and Dickhaus, H., Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput Methods Prog Biomed 108(1):10–19, 2012.

    Article  Google Scholar 

  4. Artan, R. B., and Yazgan, E., Epileptic seizure detection from SEEG data by using higher order statistics and spectra. itüdergisi 7:102–111, 2008.

    Google Scholar 

  5. Fathima, T., Bedeeuzzaman, M., Farooq, O., and Khan, Y. U., Wavelet based features for epileptic seizure detection. MES J of Technol and Manag. 2(1):108–112, 2010.

    Google Scholar 

  6. Yuen, C. T., San, W. S., Rizoni, M., and Seong, T. C., Classification of human emotions from EEG signals using statistical features and neural network. Int. J Integr Eng. 1:71–79, 2009.

    Google Scholar 

  7. Albayrak, M., and Koklukaya, E., The detection of an epileptiform activity on EEG signals by using data mining process. e-Journal of New World Sci. Acad 4(1):1–12, 2009.

    Google Scholar 

  8. Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093, 2007.

    Article  Google Scholar 

  9. Ozsen, S., Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Comput. & Applic. 2012. doi:10.1007/s00521-012-1065-4.

    Google Scholar 

  10. Gandhi, T. K., Chakraborty, P., Roy, G. G., and Panigrahi, B. K., Discrete harmony search based expert model for epileptic seizure detection in electroencephalography. Expert Syst Appl 39(4):4055–4062, 2012.

    Article  Google Scholar 

  11. Mohseni, H. R., Maghsoudi, A., and Shamsollahi, M. B., Seizure detection in EEG signals: A comparison of different approaches. IEEE EMBS’06. pp. 6724–6727, 2006.

  12. Alessandro, M. D’, Vachtsevanos, G., Hinson, A., Esteller, R., Echauz, J., and Litt, B., A genetic approach to selecting the optimal feature for epileptic seizure prediction. IEEE EMBC’01, pp. 1703–1706, 2001.

  13. Kannathal, N., Choo, M., Acharya, U., and Sadasivan, P., Entropies for detection of epilepsy in EEG. Comput Methods Prog Biomed 80:187–194, 2005.

    Article  Google Scholar 

  14. Srinivasan, V., Eswaran, C., and Sriraam, N., Artificial neural network based epileptic detection using time domain and frequency domain features. J Med Syst 29:647–660, 2005.

    Article  Google Scholar 

  15. Bruzzo, A. A., Gesierich, B., Santi, M., Tassinari, C. A., Birbaumer, N., and Rubboli, G., Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients-A preliminary study. Neurol Sci 29(1):3–9, 2008.

    Article  Google Scholar 

  16. Geng, S., Zhou, W., Yuan, Q., Cai, D., and Zeng, Y., EEG non-linear feature extraction using correlation dimension and Hurst exponent. Neurol Res 33(9):908–912, 2011.

    Article  Google Scholar 

  17. Bao, F. S., Lie, D. Y., and Zhang, Y., A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. ICTAI’08. pp. 482–486, 2008.

  18. Sezer, E., Isik, H., and Saracoglu, E., Employment and comparison of different Artificial Neural Networks for epilepsy diagnosis from EEG signals. J Med Syst 36(1):347–62, 2012.

    Article  Google Scholar 

  19. Holzmann, C. A., Pe´rez, C. A., Held, C. M., Martı´n, M. S., Pizarro, F., Pe´rez, J. P., Garrido, M., and Pierano, P., Expert-system classification of sleep/waking states in infants. Med Biological Biol. Eng. Comput. 37:466–476, 1999.

    Article  Google Scholar 

  20. Oropesa, E., Cycon, H. L., and Jobert, M., Sleep stage classification using wavelet transform and neural network. ICSI Technical Report TR-99-008. pp. 1–7, 1999.

  21. Agarwal, R., and Gotman, J., Computer-assisted sleep staging. IEEE Trans Biomed Eng 48:1412–1423, 2001.

    Article  Google Scholar 

  22. Estrada, E., Nazeran, H., Nava, P., Behmehani, K., Burk, J., and Lucas, E., EEG feature extraction for classification of sleep stages. In: Proceedings of the 26th annual conference of the IEEE EMBS. San Francisco. pp. 196–199, 2004.

  23. Becq, G., Charbonnier, S., Chapotot, F., Buguet, A., Bourdon, L., and Baconnier, P., Comparison between five classifiers for automatic scoring of human sleep recordings. Stud Comput Intell. 4:113–127, 2005.

    Google Scholar 

  24. Sinha, R. K., Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states. J Med Syst 32:291–299, 2008.

    Article  Google Scholar 

  25. Šušmáková, K., and Krakovská, A., Discrimination ability of individual measures used in sleep stages classification. Artif Intell Med 44:261–277, 2008.

    Article  Google Scholar 

  26. Chapotot, F., and Becq, G., Automated sleep-wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules. Int J Adapt Control and Signal Process 24:409–423, 2010.

    MATH  MathSciNet  Google Scholar 

  27. Subasi, A., Kiymik, M. K., Akin, M., and Erogul, O., Automatic recognition of vigilance state by using wavelet-based artificial neural network. Neural Comput Appl.. 14(1):45–55, 2005.

    Article  Google Scholar 

  28. Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., and Chapotot, F., Feature selection for sleep/wake stages classification using data driven methods. Biomed Signal Process Control. 2:171–179, 2007.

    Article  Google Scholar 

  29. Doroshenkov, L. G., Konyshev, V. A., and Selishchev, S. V., Classification of human sleep stages based on EEG processing using hidden markov models. Biomed Eng 41:25–28, 2007.

    Article  Google Scholar 

  30. Ebrahimi, F., Mikaeili, M., Estrada, E., and Nazeran, H., Automatic sleep stage classification based on EEG signals using neural networks and wavelet packet coefficients. Proceeding of IEEE EMBC. pp. 1151–1154, 2008.

  31. Jo, H. G., Park, J. Y., Lee, C. K., An, S. K., and Yoo, S. K., Genetic fuzzy classifier for sleep stage identification. Comput Biol Med 40:629–634, 2010.

    Article  Google Scholar 

  32. Gunes, S., Polat, K., Yosunkaya, S., and Dursun, M., A novel data pre-processing method on automatic determining of sleep stages: K-means clustering based feature weighting. Complex Systems and Applications-ICCSA. Le Havre-France. pp. 112–117, 2009.

  33. Tagluk, M. E., Sezgin, N., and Akin, M., Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. J Med Syst 34:717–725, 2010.

    Article  Google Scholar 

  34. Fraiwan, L., Lweesy, K., Khasawneh, N., Fraiwan, M., Wenz, H., and Dickhaus, H., Classification of sleep stages using multi-wavelet time frequency entropy and LDA. Methods Inf Med 49(3):230–237, 2010.

    Article  Google Scholar 

  35. Hsu, Y. L., Yang, Y. T., Wang, J. S., and Hsu, C. Y., Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing 104:105–114, 2013.

    Article  Google Scholar 

  36. Goldberger, A. L., Amaral, L. A., Glass, L., et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):215–220, 2000.

    Article  Google Scholar 

  37. Smith, J. R., Karacan, I., and Yang, M., Automated EEG analysis with microcomputers. Sleep 1(4):435–443, 1979.

    Google Scholar 

  38. Quyen, M. L. V., Martinerie, J., Baulac, M., and Varela, F., Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. Neuroreport 10:2149–215, 1999.

    Article  Google Scholar 

  39. Hjorth, B., Time domain descriptors and their relation to a particular model for generation of EEG activity. In: CEAN – Computerized EEG analysis, Stuttgart: Gustav Fischer Verlag. pp. 3–8, 1975.

  40. Petrosian, A., Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. IEEE CBMS’ 95. pp. 212–217, 1995.

  41. Gardner, A. B., Krieger, A. E., Vachtsevanos, G., and Litt, B., One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 7:1025–1044, 2006.

    MATH  MathSciNet  Google Scholar 

  42. Esteller, R., Echaus, J., Tcheng, T., Litt, B., and Pless, B., Line length: an efficient feature for seizure onset detection. IEEE EMBS’01. pp. 1707–1710, 2001.

  43. Katz, M. J., Fractals and the analysis of waveforms. Comput Biol Med 18:145–156, 1988.

    Article  Google Scholar 

  44. Avsar, E., Epileptic EEG signal classification using one-class support vector machines, Istanbul Technical University. M.Sc. Thesis. 2009.

  45. Hasiloglu, A., Rotation-Invariant texture analysis and classification by artificial neural networks and wavelet transform. Technical report, 1999.

  46. Subasi, A., Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput Biol Med 37(2):227–244, 2007.

    Article  Google Scholar 

  47. Mahajan, K., Vargantwar, M. R., and Rajput, M. S., Classification of EEG using PCA, ICA and Neural Network. Int. J. Eng Adv. Technol. (IJEAT) 1(1):1–5, 2011.

    Google Scholar 

  48. Peker, M., and Sen, B., A new complex-valued intelligent system for automated epilepsy diagnosis using EEG signals. Glob J Technol: 3rd World Conference on Inf Technol. 3:1121–1128, 2013.

    Google Scholar 

  49. Sabeti, M., Katebi, S., and Boostani, R., Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med 47:263–274, 2009.

    Article  Google Scholar 

  50. Rényi, A., On a new axiomatic theory of probability. Acta Math Hung. 6:285–335, 1995.

    Article  Google Scholar 

  51. Approximate entropy, http://en.wikipedia.org/wiki/Approximate_entropy (Accessed: 10.10.2012)

  52. Xu, L., Meng, M. Q. H., Qi, X., and Wang, K., Morphology variability analysis of wrist pulse waveform for assessment of arteriosclerosis status. J Med Syst 34(3):331–339, 2010.

    Article  Google Scholar 

  53. Yuan, Q., Zhou, W., Li, S., and Cai, D., Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96:29–38, 2011.

    Article  Google Scholar 

  54. Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., and Suri, J. S., Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051, 2006.

    Article  Google Scholar 

  55. Pincus, S. M., and Goldberger, A. L., Physiological time-series analysis: what does regularity quantify? Am Physiol. Soc.. 266:1643–1656, 1994.

    Google Scholar 

  56. Bandt, C., and Pompe, B., Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):1–4, 2002.

    Article  Google Scholar 

  57. Liu, X. F., and Wang, Y., Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Phys B 18:2690–2695, 2009.

    Article  Google Scholar 

  58. Cao, B., Shen, D., Sun, J. T., Yang, Q., and Chen, Z., Feature selection in a kernel Space. 24th Annual International Conference on Machine Learning, pp. 121–128, 2007.

  59. Yu, L., and Liu, H., Feature selection for high-dimensional data: A fast correlation-based filter solution. ICML’03. pp. 856–863, 2003.

  60. Ding, C., and Peng, H. C., Minimum redundancy feature selection from microarray gene expression data, Second IEEE Computational Systems Bioinformatics Conference. pp. 523–528, 2003.

  61. Kononenko, I., Estimating attributes: Analysis and extensions of RELIEF. ECML’94. pp. 171–182, 1994.

  62. Sen, B., Ucar, E., and Delen, D., Predicting and analyzing secondary education placement-test scores: A data mining approach. Expert Syst Appl 39(10):9468–9476, 2012.

    Article  Google Scholar 

  63. Kavzoglu, T., and Colkesen, I., Classification of satellite images using decision trees: Kocaeli case. Electron. J Map Technol. 2(1):36–45, 2010.

    Google Scholar 

  64. Quinlan, L., C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, 1993.

    Google Scholar 

  65. Akgobek, O., Application of inductive learning to gain knowledge of an expert system. VI. Production Research Symposium. pp. 1–4, 2006.

  66. Yigit, S., Eryigit, R., and Celebi, F. V., Optical gain model proposed with the use of artificial neural networks optimised by artificial bee colony algorithm. Optoelectronics Adv Mater Rapid Commun 5(9):1026–1029, 2011.

    Google Scholar 

  67. Celebi, F. V., A proposed CAD model based on amplified spontaneous emission spectroscopy. J Optoelectron Adv Mater 7(3):1573–1579, 2005.

    Google Scholar 

  68. Goktas, H., Cavusoglu, A., Sen, B., and Toktas, I., The use of artificial neural networks in simulation of mobile ground vehicles. Math Comput Appl. 12(2):87–96, 2007.

    Google Scholar 

  69. Celebi, N., An accurate single CAD model based on radial basis function network. J. Optoelectron. Adv. Mater Rapid Commun. 4(4):498–501, 2010.

    MathSciNet  Google Scholar 

  70. Cortes, C., and Vapnik, V., Support vector networks. Mach Learn 20(3):273–297, 1995.

    MATH  Google Scholar 

  71. Ocak, H., A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J Med Syst 37(2):1–9, 2013.

    Article  Google Scholar 

  72. Breiman, L., Random forests. Mach Learn 45(1):5–32, 2001.

    Article  MATH  Google Scholar 

  73. American academy of sleep medicine task force, Sleep related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22:667–689, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baha Şen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şen, B., Peker, M., Çavuşoğlu, A. et al. A Comparative Study on Classification of Sleep Stage Based on EEG Signals Using Feature Selection and Classification Algorithms. J Med Syst 38, 18 (2014). https://doi.org/10.1007/s10916-014-0018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0018-0

Keywords

Navigation