Skip to main content

Advertisement

Log in

Effective Automated Prediction of Vertebral Column Pathologies Based on Logistic Model Tree with SMOTE Preprocessing

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This study develops a logistic model tree based automation system based on for accurate recognition of types of vertebral column pathologies. Six biomechanical measures are used for this purpose: pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius and grade of spondylolisthesis. A two-phase classification model is employed in which the first step is preprocessing the data by use of Synthetic Minority Over-sampling Technique (SMOTE), and the second one is feeding the classifier Logistic Model Tree (LMT) with the preprocessed data. We have achieved an accuracy of 89.73 %, and 0.964 Area Under Curve (AUC) in computer based automatic detection of the pathology. This was validated via a 10-fold-cross-validation experiment conducted on clinical records of 310 patients. The study also presents a comparative analysis of the vertebral column data with the use of several machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bigos, S. J., United States. Agency for Health Care Policy and Research., Acute low back problems in adults, U.S. Dept. of Health and Human Services, Public Health Service. Agency for Health Care Policy and Research, Rockville, 1994.

    Google Scholar 

  2. NINDS, National Institute of Neurological Disorders and Stroke. Low-Back Pain Fact Sheet. http://www.ninds.nih.gov/disorders/backpain/detail_backpain.htm. Accessed March 3, 2013.

  3. Langworthy, J. R., Evaluation of impairment related to low back pain. J. Med. Syst. 17:253–256, 1993.

    Article  Google Scholar 

  4. J. P. Kostuik, S. Margolis, Low Back Pain and Osteoporosis, The John Hopkins White Paper on Low Back Pain and Osteoporosis, 2002.

  5. Verdonck, B., Nijlunsing, R., Gerritsen, F. A., Cheung, J., Wever, D. J., Veldhuizen, A., Devillers, S., and Makram-Ebeid, S., Computer assisted quantitative analysis of deformities of the human spine. In: Wells, W., Colchester, A., and Delp, S. (Eds.), Medical Image Computing and Computer-Assisted Interventation — MICCAI’98. Springer, Berlin, pp. 822–831, 1998.

    Chapter  Google Scholar 

  6. Herring, J. L., and Dawant, B. M., Automatic lumbar vertebral identification using surface-based registration. Journal of biomedical informatics 34(2):74–84, 2001.

    Article  Google Scholar 

  7. Whitmarsh, T., Humbert, L., Del Rio Barquero, L. M., Di Gregorio, S., and Frangi, A. F., 3D reconstruction of the lumbar vertebrae from anteroposterior and lateral dual-energy X-ray absorptiometry. Med. Image Anal. 17:475–487, 2013.

    Article  Google Scholar 

  8. Anitha, H., and Prabhu, G. K., Automatic Quantification of Spinal Curvature in Scoliotic Radiograph using Image Processing. J. Med. Syst. 36(3):1943–1951, 2012.

    Article  Google Scholar 

  9. Alomari, R. S., Corso, J. J., Chaudhary, V., and Dhillon, G., Toward a clinical lumbar CAD: herniation diagnosis. International journal of computer assisted radiology and surgery 6(1):119–126, 2011.

    Article  Google Scholar 

  10. Chamarthy, P., Stanley, R. J., Cizek, G., Long, R., Antani, S., and Thoma, G., Image analysis techniques for characterizing disc space narrowing in cervical vertebrae interfaces. Comput. Med. Imaging Graph. 28:39–50, 2004.

    Article  Google Scholar 

  11. Berthonnaud, E., Dimnet, J., Roussouly, P., and Labelle, H., Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. Journal of spinal disorders & techniques 18(1):40–47, 2005.

    Article  Google Scholar 

  12. Rocha Neto, A., Sousa, R., Barreto, G. A., and Cardoso, J., Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option. In: Vitrià, J., Sanches, J., and Hernández, M. (Eds.), Pattern Recognition and Image Analysis. Springer, Berlin, pp. 588–595, 2011.

    Chapter  Google Scholar 

  13. Mattos, C. C., and Barreto, G., ARTIE and MUSCLE models: building ensemble classifiers from fuzzy ART and SOM networks. Neural Comput & Applic 22:49–61, 2013.

    Article  Google Scholar 

  14. E. Abdrabou, A Hybrid Intelligent Classifier for The Diagnosis Of Pathology On The Vertebral Column. In Proc. of Intelligent Information and Engineering Systems INFOS 2012. In Print.

  15. D. J. Newman, S. Hettich, C. L. Blake, C. J. Merz, UCI Repository of machine learning databases, University California Irvine, Department of Information and Computer Science,1998.

  16. Roussouly, P., and Pinheiro-Franco, J. L., Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur. Spine J. 20(Suppl 5):609–618, 2011.

    Article  Google Scholar 

  17. Legaye, J., Duval-Beaupere, G., Hecquet, J., and Marty, C., Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur. Spine J. 7:99–103, 1998.

    Article  Google Scholar 

  18. Sergides, I. G., McCombe, P. F., White, G., Mokhtar, S., and Sears, W. R., Lumbo-pelvic lordosis and the pelvic radius technique in the assessment of spinal sagittal balance: strengths and caveats. Eur. Spine J. 20:591–601, 2011.

    Article  Google Scholar 

  19. Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P., SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–357, 2002.

    MATH  Google Scholar 

  20. N.V. Chawla, C4.5 and Imbalanced Data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In ICMLWorkshop on Learning from Imbalanced Datasets II, 2003.

  21. Landwehr, N., Hall, M., and Frank, E., Logistic Model Trees. Mach. Learn. 59:161–205, 2005.

    Article  MATH  Google Scholar 

  22. Podgorelec, V., Kokol, P., Stiglic, B., and Rozman, I., Decision Trees: An Overview and Their Use in Medicine. J. Med. Syst. 26(5):445–463, 2002.

    Article  Google Scholar 

  23. Breiman, L., Classification and regression trees. Wadsworth International Group, Belmont, 1984.

    MATH  Google Scholar 

  24. Friedman, J., Hastie, T., and Tibshirani, R., Additive logistic regression: a statistical view of boosting. Ann. Statist. 38(2):337–374, 2000.

    Article  MathSciNet  Google Scholar 

  25. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H.Witten, The WEKA Data Mining Software: An Update; SIGKDD Explorations, 11(1) (2009).

  26. Özçift, A., Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Computers in Biology and Medicine 41(5):265–271, 2011.

    Article  Google Scholar 

  27. Pollettini, J. T., et al., Using machine learning classifiers to assist healthcare-related decisions: classification of electronic patient records. J. Med. Syst. 36(6):3861–3874, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Ibrikci.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabulut, E.M., Ibrikci, T. Effective Automated Prediction of Vertebral Column Pathologies Based on Logistic Model Tree with SMOTE Preprocessing. J Med Syst 38, 50 (2014). https://doi.org/10.1007/s10916-014-0050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0050-0

Keywords

Navigation