Skip to main content

Advertisement

Log in

A Modular and Programmable Development Platform for Capsule Endoscopy System

  • Mobile Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Toennies, J. L., Tortora, G., Simi, M., Valdastri, P., and Webster, R. J., Swallowable medical devices for diagnosis and surgery: the state of the art. Proc. IMechE Vol. 224 Part C: J. Mechanical Engineering Science, doi:10.1243/09544062JMES1879, pp. 1397–1414, 2009.

  2. Faigel, D. O., and Cave, D. R., Capsule Endoscopy. Saunders Elsevier, Philadelphia, 2008.

    Google Scholar 

  3. Pillcam, Given Imaging, [Online]. Available: http://www.givenimaging.com/en-us/, 2013.

  4. Food and Drug Adminstartion, [Online]. Available: http://www.fda.gov, 2013.

  5. EndoCapsule, Olympus, [Online]. Available: http://www.olympus-europa.com, 2013.

  6. MiroCam, Intromedic. [Online]. Available: http://www.intromedic.com, 2013.

  7. Cavallotti, C., et al., An FPGA-based versatile development system for endoscopic capsule design optimization. Sensors Actuators A Phys. 172:301–307, 2011. doi:10.1016/j.sna.2011.01.010.

    Article  Google Scholar 

  8. Covia, D., et al., Miniaturized digital camera system for disposable endoscopic applications. Sensors Actuators A 162(2010):291–296, 2010.

    Article  Google Scholar 

  9. Gu, Y., et. al., A new system design of the multi-view micro-ball endoscopy system. IEEE EMBS Buenos Aires, pp. 6409–6412, 2010.

  10. Chen, X., Zhang, X., Zhang, L., Li, X., Qi, N., Jiang, H., and Wang, Z., A wireless capsule endoscope system with low power controlling and processing ASIC. IEEE Trans. Biomed. Circ. Syst. 3(1):11–22, 2009.

    Article  Google Scholar 

  11. Dung, L., and Wu, Y., A wireless narrowband imaging chip for capsule endoscope. IEEE Trans. Biomed. Circ. Syst. 4(6):462–468, 2010.

    Article  Google Scholar 

  12. Kim, K., Yun, S., Lee, S., Nam, S., Yoon, Y. J., and Cheon, C., A design of a high-speed and high-efficiency capsule endoscopy system. IEEE Trans. Biomed. Eng. 59(4):1005–1011, 2012. doi:10.1109/TBME.2011.2182050.

    Article  Google Scholar 

  13. Woo, S. H., Yoon, K. W., et al., High speed receiver for capsule endoscope. J. Med. Syst. 34(5):843–847, 2010.

    Article  Google Scholar 

  14. Chan, Y., Meng, M. Q. H., and Wang, X., A prototype design of a wireless capsule endoscope. IEEE Int. Conf. Mechatron. Autom. 400–403, 2005.

  15. Qian, H., Xiao-gang, L., Bin-feng, X., and Cheng-lin, P., A wireless endoscope based on an embedded system. J. Chongqing Univ. 7(3):241–246, 2008.

    Google Scholar 

  16. Cheng, C., Liu, Z., Hu, C., and Meng, M. Q. H., A novel wireless capsule endoscope with JPEG compression engine. In: Proc. IEEE International Conference on Automation and Logistics, pp. 553–558, 2010.

  17. Cavallotti, C., et al., An integrated vision system with autofocus for wireless capsular endoscopy. Sensors Actuators A 156:72–78, 2009.

    Article  Google Scholar 

  18. Song, C. G., and Kang, J. U., Design of the computerized 3D endoscopic imaging system for delicate endoscopic surgery. J. Med. Syst. 35(1):135–141, 2011.

    Article  Google Scholar 

  19. Sun, D., Hu, W., Wu, W., Liu, J., Duan, H., and Si, J., Design of the image-guided biopsy marking system for gastroscopy. J. Med. Syst. 36(5):2909–2920, 2012.

    Article  Google Scholar 

  20. Hashiba, M., Matsuto, T., Arai, F., Yamakawa, T., and Akazawa, K., Accessing endoscopic images for remote conference and diagnosis using WWW server with a secure socket layer. J. Med. Syst. 24(6):333–338, 2000.

    Article  Google Scholar 

  21. Kimura, N., Nakajima, I., Juzoji, H., and Miwa, T., Video endoscopic database on WWW linking with ISDN. J. Med. Syst. 25(1):1–7, 2001.

    Article  Google Scholar 

  22. Sainju S., Bui, F., and Wahid, K. A., Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. 11 pages, 2014, doi:10.1007/s10916-014-0025-1.

  23. Song, L., et al., Narrow band imaging and multiband imaging. Gastrointest. Endosc. 67(4):581–589, 2008.

    Article  Google Scholar 

  24. Khan, T. H., and Wahid, K., White and narrow band image compressor based on a new color space for capsule endoscopy. Image Commun. 29(3):345–360, 2014.

    Google Scholar 

  25. Turcza, P., and Duplaga, M., Low-power image compression for wireless capsule endoscopy. In: Proc. IEEE International Workshop on Imaging Systems and Techniques, pp. 1–4, 2007.

  26. Rigler, S., Bishop, W., and Kennings, A., FPGA-based lossless data compression using Huffman and LZ77 algorithms. In: Proc. IEEE Canadian Conf. on Elec. and Comp. Engin., pp. 1235–1238, 2007.

  27. Khan, T. H., and Wahid, K. A., Lossless and low-power image compressor for wireless capsule endoscopy. VLSI Des. 2011:343787, 2011.

    Article  MathSciNet  Google Scholar 

  28. Wu, J., and Li, Y., Low-complexity video compression for capsule endoscope based on compressed sensing theory. In: Proc. Int. Conf. of the IEEE Eng. in Medicine and Biology Society, pp. 3727–3730, 2009.

  29. Tajallipour, R., and Wahid, K., Efficient data encoder for low-power capsule endoscopy application. In: Proc. Int. Conf. on Information Sciences Signal Processing and their Applications, pp. 512–515, 2010.

  30. Kolar, A., Romain, O., Ayoub, J., Viateur, S., and Granado, B., Prototype of video endoscopic capsule with 3-D imaging capabilities. IEEE Trans. Biomed. Circ. Syst. 4(4):239–249, 2010.

    Article  Google Scholar 

  31. Mackiewicz, M., Berens, J., and Fisher, M., Wireless capsule endoscopy color video segmentation. IEEE Trans. Med. Imaging 27(12):1769–1781, 2008.

    Article  Google Scholar 

  32. Pahlavan, K., Bao, G., Ye, Y., Makarov, S., Khan, U., Swar, P., Cave, D., Karellas, A., Krishnamurthy, P., and Sayrafian, K., RF localization for wireless video capsule endoscopy. Int. J. Wireless Inf. Networks 19(4):326–340, 2012.

    Article  Google Scholar 

  33. Toshiba TCM8230MD Image Sensor, [Online]. Available: https://www.sparkfun.com/products/8667, 2013.

  34. Introduction to I2C and SPI protocols, [Online]. Available: http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols, 2013.

  35. Chicago Miniature Lighting, White LED, CMD67-21UWCCT-ND, [Online]. Available: http://www.chml.com/products/pdf/1-22.pdf, 2013.

  36. Bivar, Inc., Blue LED, SM1206UV-405-IL, [Online]. Available: http://www.bivar.com/Images/Cart/SM1206UV-405-IL.pdf, 2013.

  37. Panasonic Corporation, Green LED, LNJ624C4CRA, [Online]. Available: http://www.semicon.panasonic.co.jp/ds4/LNJ624C4CRA_AEK_discon.pdf, 2013.

  38. Lattice Semiconductor, MachXO2-2000 FPGA [Online]. Available: http://www.latticesemi.com/en/Products/FPGAandCPLD/MachXO2.aspx, 2013.

  39. Kathuria, J., Khan, M. A., and Noor, A., A review of clock gating techniques. MIT Int. J. Electron. Commun. Eng. 1(2):106–114, 2011.

    Google Scholar 

  40. Khan, T. H., and Wahid, K., Low complexity color-space for capsule endoscopy image compression. IET Electron. Lett. 47(22):1217–1218, 2011. doi:10.1049/el.2011.2211.

    Article  Google Scholar 

  41. Khan, T. H., and Wahid, K., Low power and low complexity compressor for video capsule endoscopy. IEEE Trans. Circ. Syst. Video Technol. 21(10):1534–1546, 2011. doi:10.1109/TCSVT.2011.2163985.

    Article  Google Scholar 

  42. Shumaker, J. L., Interfacing the TCM8230MD CMOS camera with an ARM7 microcontroller. [Online]. Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA499618, 2009.

  43. Mahmud, R., Techniques to make clock switching glitch free. EE Times. [Online]. Available: http://www.eetimes.com/story/OEG20030626S0035, 2003.

  44. FCC rules and regulations 47 CFR Part 95, subparts E (95.601-95.673) and I (95.1201-95.1219) Personal Radio Services, 2002.

  45. Microsemi Corporation, ZL70102 MICS transceiver. [Online]. Available: http://www.microsemi.com/ultra-low-power-wireless/implantable-medical-transceivers/zl70102, 2013.

  46. Kahn, A. R., Chow, E. Y., Latief, O. A., and Irazoqui, P. P., Low-power, high data rate transceiver system for implantable prostheses. Int. J. Telemed. Appl. 2010:563903, 2010. doi:10.1155/2010/563903.

    Google Scholar 

  47. Nordic Semiconductor, nRF24L01+ transceiver, [Online]. Available: http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P, 2013.

  48. Valdastri, P., Menciassi, A., and Dario, P., Transmission power requirements for novel Zigbee implants in the gastrointestinal tract. IEEE Trans. Biomed. Eng. 55(6):1705–1710, 2008.

    Article  Google Scholar 

  49. Energizer, Coin cell battery, 357/303H, [Online]. Available: http://data.energizer.com/PDFs/357-303hz.pdf, 2013.

  50. Analog Devices, Low dropout regulator, ADP121, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADP121.pdf, 2013.

  51. Meder Electronic, Micro-Miniature Reed Sensor, MK24-B-2-OE, [Online]. Available: http://www.meder.com/fileadmin/meder/pdf/en/Products/Reed_Sensors/Reed_Sensor_MK24_E.pdf, 2013.

  52. Khan, T. H., and Wahid, K., An advanced physiological data logger for medical imaging applications. EURASIP J. Embed. Syst. 10:2012, 2012. doi:10.1186/1687-3963-2012-10.

    Google Scholar 

  53. Kopáčová, M., Tachecí, I., Květina, J., Bureš, J., Kuneš, M., Špelda, S., Tyčová, V., Svoboda, Z., and Rejchrt, S., Wireless video capsule enteroscopy in preclinical studies: Methodical design of its applicability in experimental pigs. Dig. Dis. Sci. 55(3):626–630, 2010. doi:10.1007/s10620-009-0779-3.

    Article  Google Scholar 

  54. Animal Research Ethics Board (AREB) Review of Animal Use Protocols of University of Saskatchewan. [Online]. Available: http://www.usask.ca/research/ethics_review/animalcare/animal_reb.php, 2014.

  55. Diao, S., Zheng, Y., Gao, Y., Heng, C. H., and Je, M., A 7.2 mW 15Mbps ASK CMOS transmitter for ingestible capsule endoscopy. In: Proc. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 512–515, 2010.

  56. Shen, M., Lee, C., and Bor, J., A 4.0-mW 2-Mbps programmable BFSK transmitter for capsule endoscope applications. IEEE Asian Solid-State Circuits Conference, pp. 245–248, 2005.

  57. Itoh, S., Kawahito, S., and Terakawa, S., A 2.6 mW 2fps QVGA CMOS one-chip wireless camera with digital image transmission function for capsule endoscopes. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3353–3356, 2006, Island of Kos, doi:10.1109/ISCAS.2006.1693344.

  58. Thoné, J., Radiom, S., Turgis, D., Carta, R., Gielen, G., and Puers, R., Design of a 2 mbps FSK near-field transmitter for wireless capsule endoscopy. Sensors Actuators A Phys. 156(1):43–48, 2009. doi:10.1016/j.sna.2008.11.027.

    Article  Google Scholar 

  59. Stoa, S., Santiago, R. C., and Balasingham, I., An ultra wideband communication channel model for capsule endoscopy. In: Proc. International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), pp. 1–5, 2010.

  60. Rasouli, M., et al., Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract. Front. Mech. Eng. 6(1):40–44, 2011. doi:10.1007/s11465-011-0204-4.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grand Challenges Canada (GCC) Star in Global Health, Natural Science and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation (CFI). The authors would like to thank Serge Nazerenko, Chandler Janzen, and Mohammad Shamim Imtiaz their help and technical assistance. Thanks to Western College of Veterinary Medicine (WCVM) of University of Saskatchewan for providing lab facility for conducting animal testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan A. Wahid.

Additional information

This article is part of the Topical Collection on Mobile Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.H., Shrestha, R. & Wahid, K.A. A Modular and Programmable Development Platform for Capsule Endoscopy System. J Med Syst 38, 57 (2014). https://doi.org/10.1007/s10916-014-0057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0057-6

Keywords

Navigation