Skip to main content
Log in

Sensor-Based Architecture for Medical Imaging Workflow Analysis

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes’ characteristics and users’ behaviours that were unknown before the utilization of this solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ludwick D, Doucette J: Adopting electronic medical records in primary care: lessons learned from health information systems implementation experience in seven countries. International Journal of Medical Informatics 2009, 78(1):22.

    Article  CAS  PubMed  Google Scholar 

  2. Velde RV, Degoulet P: Clinical information systems: a component-based approach: Springer; 2010.

  3. Pianykh OS: Digital imaging and communications in medicine (DICOM): Springer; 2008.

  4. Hu M, Pavlicek W, Liu PT, Zhang M, Langer SG, Wang S, Miranda R, Wu TT: Informatics in Radiology: Efficiency Metrics for Imaging Device Productivity. Radiographics 2011, 31(2):603–616.

    Article  PubMed  Google Scholar 

  5. Wang S, Pavlicek W, Roberts CC, Langer SG, Zhang M, Hu M, Morin RL, Schueler BA, Wellnitz CV, Wu T: An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring. Journal of Digital Imaging 2011, 24(2):223–233.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Santos M, Bastião L, Costa C, Silva A, Rocha N: DICOM and Clinical Data Mining in a Small Hospital PACS: A Pilot Study. In. Edited by Cruz-Cunha MM, Varajão J, Powell P, Martinho R, vol. 221: Springer Berlin Heidelberg; 2011: 254–263.

  7. Wang Y-F, Chang M-Y, Chiang R-D, Hwang L-J, Lee C-M, Wang Y-H: Mining Medical Data: A Case Study of Endometriosis. Journal of medical systems 2013, 37(2):1–7.

    CAS  Google Scholar 

  8. Share DA, Campbell DA, Birkmeyer N, Prager RL, Gurm HS, Moscucci M, Udow-Phillips M, Birkmeyer JD: How a regional collaborative of hospitals and physicians in Michigan cut costs and improved the quality of care. Health Affairs 2011, 30(4):636–645.

    Article  PubMed  Google Scholar 

  9. de Belvis AG, Francesca F, Lucia SM, Luca V, Giovanni F, Walter R: The financial crisis in Italy: Implications for the healthcare sector. Health Policy 2012.

  10. Nuti S, Vainieri M, Frey M: Healthcare resources and expenditure in financial crisis: scenarios and managerial strategies. Journal of Maternal-Fetal and Neonatal Medicine 2012, 25(S4):40–43.

    Article  Google Scholar 

  11. El Azami I, Malki MOC, Tahon C: Integrating Hospital Information Systems in Healthcare Institutions: A Mediation Architecture. Journal of medical systems 2012, 36(5):3123–3134.

    Article  PubMed  Google Scholar 

  12. Valente F, Costa C, Silva A: Dicoogle, a PACS featuring profiled content based image retrieval. PloS one 2013, 8(5):e61888.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. National Electrical Manufacturers Association - NEMA, The DICOM Standard - Message Exchange (Part 7), 2011

  14. Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shvo AS: HL7 clinical document architecture, release 2. Journal of the American Medical Informatics Association 2006, 13(1):30–39.

    Article  PubMed Central  PubMed  Google Scholar 

  15. McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW, Orechia J, Bickel J, Wattanasin N, Gilbert C, Trevvett P: SHRINE: Enabling Nationally Scalable Multi-Site Disease Studies. PloS one 2013, 8(3):e55811.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Madhavan S, Zenklusen J-C, Kotliarov Y, Sahni H, Fine HA, Buetow K: Rembrandt: helping personalized medicine become a reality through integrative translational research. Molecular Cancer Research 2009, 7(2):157–167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gutman S, Kessler LG: The US Food and Drug Administration perspective on cancer biomarker development. Nature Reviews Cancer 2006, 6(7):565–571.

    Article  CAS  PubMed  Google Scholar 

  18. Pathak J, Wang J, Kashyap S, Basford M, Li R, Masys DR, Chute CG: Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience. Journal of the American Medical Informatics Association 2011, 18(4):376–386.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Angulo C, Reig E, Maldonado JA, Moner D, Boscá D, Pérez D, Abad I, Mandingorra J, Robles M: Pangea-LE: a non-invasive lightweight biomedical data integration engine. 2008.

  20. Robles M, Fernández-Breis J, Maldonado J, Moner D, Martínez-Costa C, Bosca D, Menárguez-Tortosa M: ResearchEHR: use of semantic web technologies and archetypes for the description of EHRs. Studies in health technology and informatics 2010, 155:129.

    PubMed  Google Scholar 

  21. Maldonado JA, Costa CM, Moner D, Menárguez-Tortosa M, Boscá D, Miñarro Giménez JA, Fernández-Breis JT, Robles M: Using the ResearchEHR platform to facilitate the practical application of the EHR standards. Journal of Biomedical Informatics 2011.

  22. Maldonado JA, Moner D, Boscá D, Fernández-Breis JT, Angulo C, Robles M: LinkEHR-Ed: A multi-reference model archetype editor based on formal semantics. International Journal of Medical Informatics 2009, 78(8):559–570.

    Article  PubMed  Google Scholar 

  23. Hsieh N-C, Chang C-Y, Lee K-C, Chen J-C, Chan C-H: Technological Innovations in the Development of Cardiovascular Clinical Information Systems. Journal of medical systems 2012, 36(2):965–978.

    Article  PubMed  Google Scholar 

  24. Ting S, See-To EW, Tse Y: Web Information Retrieval for Health Professionals. Journal of medical systems 2013, 37(3):1–14.

    Article  Google Scholar 

  25. Nagy PG, Warnock MJ, Daly M, Toland C, Meenan CD, Mezrich RS: Informatics in Radiology: Automated Web-based Graphical Dashboard for Radiology Operational Business Intelligence1. Radiographics 2009, 29(7):1897–1906.

    Article  PubMed  Google Scholar 

  26. Hu M, Pavlicek W, Liu PT, Zhang M, Langer SG, Wang S, Place V, Miranda R, Wu TT: Informatics in radiology: Efficiency metrics for imaging device productivity. Radiographics 2011, 31(2):603–616.

    Article  PubMed  Google Scholar 

  27. Santos M, Silva LAB, Costa C, Silva A, Rocha N: Clinical Data Mining in Small Hospital PACS: Contributions for Radiology Department Improvement. In: Information Systems and Technologies for Enhancing Health and Social Care. IGI Global; 2013: 236–251.

  28. Santos M, Bastião L, Costa C, Silva A, Rocha N: DICOM and clinical data mining in a small hospital pacs: A pilot study. In: ENTERprise Information Systems. Springer; 2011: 254–263.

  29. Neamatullah I, Douglass M, Lehman L-w, Reisner A, Villarroel M, Long W, Szolovits P, Moody G, Mark R, Clifford G: Automated de-identification of free-text medical records. BMC medical informatics and decision making 2008, 8(1):32

    Article  PubMed Central  PubMed  Google Scholar 

  30. Uzuner Ö, Luo Y, Szolovits P: Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association 2007, 14(5):550–563.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bastião LAB, Costa C, Oliveira JL: A PACS archive architecture supported on cloud services. International Journal of Computer Assisted Radiology and Surgery 2012, 7(3):349–358.

    Article  Google Scholar 

  32. Costa C, Ferreira C, Bastião L, Ribeiro L, Silva A, Oliveira J: Dicoogle - an Open Source Peer-to-Peer PACS. Journal of Digital Imaging 2010:1–9.

  33. Costa C, Freitas F, Pereira M, Silva A, Oliveira J: Indexing and retrieving DICOM data in disperse and unstructured archives. International Journal of Computer Assisted Radiology and Surgery 2009, 4(1):71–77.

    Article  PubMed  Google Scholar 

  34. Lucene Index Server [http://lucene.apache.org] Available in: 2013

  35. Samuel C. Campos CC, Luís A. Bastião Silva: A Network Sensor for Medical Imaging Workflows. In: Information Systems and Technologies (CISTI), 2012 7th Iberian Conference on; Madrid, Spain: 1–6.

  36. Feneck R, Kneeshaw J, Ranucci M: Core Topics in Transesophageal Echocardiography: Cambridge University Press; 2010.

  37. Jersey [http://jersey.java.net/] Available in: 2013

  38. Grizzly [http://grizzly.java.net/] Available in: 2013

Download references

Acknowledgments

LBS is funded by the FCT (Fundação para a Ciência e a Tecnologia) under the grant SFRH/BD/79389/2011. This work has also received support from the EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant n° 115372).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís A. Bastião Silva.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.A.B., Campos, S., Costa, C. et al. Sensor-Based Architecture for Medical Imaging Workflow Analysis. J Med Syst 38, 63 (2014). https://doi.org/10.1007/s10916-014-0063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0063-8

Keywords

Navigation