Skip to main content

Advertisement

Log in

Brain MR Image Segmentation with Spatial Constrained K-mean Algorithm and Dual-Tree Complex Wavelet Transform

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In brain MR images, the noise and low-contrast significantly deteriorate the segmentation results. In this paper, we propose an automatic unsupervised segmentation method integrating dual-tree complex wavelet transform (DT-CWT) with K-mean algorithm for brain MR image. Firstly, a multi-dimensional feature vector is constructed based on the intensity, the low-frequency subband of DT-CWT and spatial position information. Then, a spatial constrained K-mean algorithm is presented as the segmentation system. The proposed method is validated by extensive experiments using both simulated and real T1-weighted MR images, and compared with the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.medicalimagecomputing.com/EMS/

  2. http://www.bic.mni.mcgill.ca/brainweb

  3. http://www.cma.mgh.harvard.edu/ibsr

References

  1. Sahoo, P. K., Soltani, S., and Wong, A. K. C., A survey of thresholding techniques. Comput Vis Grap Imag Process 41:233–260, 1988.

    Article  Google Scholar 

  2. Al-Naami, B., Bashir, A., Amasha, H., Al-Nabulsi, J., and Almalty, A. M., Statistical Approach for Brain Cancer Classification Using a Region Growing Threshold. J Med Sys 35:463–471, 2011.

    Article  Google Scholar 

  3. Sainju, S., Bui, F. M., and Wahid, K. A., Automated Bleeding Detection in Capsule Endoscopy Videos Using Statistical Features and Region Growing. J Med Sys 38:25, 2014.

    Article  Google Scholar 

  4. Egger, J., Colen, R. R., et al., Manual Refinement System for Graph-Based Segmentation Results in the Medical Domain. J Med Sys 36:2829–2839, 2012.

    Article  Google Scholar 

  5. Chen, S. T., Hung, P. K., Lin, M. S., Huang, C. Y., Chen, M. C., Wang, T. D., and Lee, W. J., DWT-Based Segmentation Method for Coronary Arteries. J Med Sys 38:55, 2014.

    Article  Google Scholar 

  6. Osareh, A., and Shadgar, B., A Segmentation Method of Lung Cavities Using Region Aided Geometric Snakes. J Med Sys 34:419–433, 2010.

    Article  Google Scholar 

  7. Kannan, S. R., Ramathilagam, S., et al., Improved Fuzzy Clustering Algorithms in Segmentation of DC-enhanced breast MRI. J Med Sys 36:321–333, 2012.

    Article  Google Scholar 

  8. Ubeyli, E. D., and Dogdu, E., Automatic Detection of Erythemato-Squamous Diseases Using k-Means Clustering. J Med Sys 34:179–184, 2010.

    Article  Google Scholar 

  9. Avci, D., Leblebicioglu, M. K., Poyraz, M., and Dogantekin, E., A New Method Based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. J Med Sys 38:7, 2014.

    Article  Google Scholar 

  10. Teng, W. G., and Chang, P. L., Identifying Regions of Interest in Medical Images Using Self-Organizing Maps. J Med Sys 36:2761–2768, 2012.

    Article  Google Scholar 

  11. Reddick, W. E., Glass, J. O., et al., Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imag 16:911–918, 1997.

    Article  Google Scholar 

  12. Song, T., Gasparovic, C., et al., A hybrid tissue segmentation approach for brain MR images. Med Biol Eng Comput 44:242–249, 2006.

    Article  Google Scholar 

  13. Chen, Y. J., Zhang, J. W., and Macione, J., An improved level set method for brain MR images segmentation and bias correction. Comput Med Imag Grap 33:510–519, 2009.

    Article  Google Scholar 

  14. Kingsbury, N. G., Complex wavelets for shift invariant analysis and filtering of signals. Journal of Applied and Computational Harmonic Analysis 10(3):234–253, 2001.

    MATH  MathSciNet  Google Scholar 

  15. Coifman, R. R., and Donoho, D. L., Translation-invariant de-noising. Lecture Notes in Statistics: Wavelets and Statistics 103:125–150, 1995.

    Article  Google Scholar 

  16. Ma, J. W., Towards artifact-free characterization of surface topography using complex wavelets and total variation minimization. Appl Math Comput 170:1014–1030, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  17. Leemput, K. V., Maes, F., Vandermeulen, D., and Suetens, P., Automatic model-based tissue classification of MR images of the brain. IEEE Trans Med Imag 18:897–908, 1999.

    Article  Google Scholar 

  18. Warfield, S. K., Kaus, M., Jolesz, F. A., and Kikinis, R., Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4:43–55, 2000.

    Article  Google Scholar 

  19. Dice, L. R., Measures of the amount of ecologic association between species. Ecology 26(3):297–302, 1945.

    Article  Google Scholar 

  20. Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification. Wiley, New York, 2001.

    MATH  Google Scholar 

Download references

Acknowledgments

This project is supported in part by Shenzhen Science and Technology plan Project (JCYJ20120615101059717), and Project of Shenzhen Institute of Information Technology (YB201009, SYS201004)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdan Zhang.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jiang, W., Wang, R. et al. Brain MR Image Segmentation with Spatial Constrained K-mean Algorithm and Dual-Tree Complex Wavelet Transform. J Med Syst 38, 93 (2014). https://doi.org/10.1007/s10916-014-0093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0093-2

Keywords

Navigation