Skip to main content
Log in

A Kinect-Based System for Lower Limb Rehabilitation in Parkinson’s Disease Patients: a Pilot Study

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This work brings together the emerging virtual reality techniques and the natural user interfaces to offer new possibilities in the field of rehabilitation. We have designed a rehabilitation game based on a low cost device (Microsoft KinectTM) connected to a personal computer. It provides patients having Parkinson’s Disease (PD) with a motivating way to perform several motor rehabilitation exercises to improve their rehabilitation. The experiment was tested on seven Parkinson’s Disease patients and results demonstrated significant improvements in completion time score and in the 10 Meters Walk Test score. Nevertheless, additional research is needed to determine if this type of training has a long-term impact. Both the device and protocol were well accepted by subjects, being safe and easy to use. We conclude that our work provides a simple and suitable tool resulting in a more enriching rehabilitation process where motivation is highly encouraged in PD patients. Feedback coming from participants corroborate the hypothesis that the system can be applied not only in clinical rehabilitation centers but at home.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andlin-Sobocki, P., Jönsson, B., Wittchen, H. U., and Olesen, J., Cost of disorders of the brain in Europe. Eur. J. Neurol. 12:1–27, 2005.

    Article  PubMed  Google Scholar 

  2. Bloem, B. R., van Vugt, J. P., and Beckley, D. J., Postural instability and falls in Parkinson’s disease. Adv. Neurol. 87:209–223, 2001.

    CAS  PubMed  Google Scholar 

  3. Hely, M. A., Morris, J. G., Traficante, R., Reid, W. G., O’Sullivan, D. J., and Williamson, P. M., The sydney multicentre study of Parkinson’s disease: Progression and mortality at 10 years. J. Neurol. Neurosurg. Psychiatry 67:300–307, 1999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Adkin, A. L., Frank, J. S., and Jog, M. S., Fear of falling and postural control in Parkinson’s disease. Mov. Disord. 18:496–502, 2003.

    Article  PubMed  Google Scholar 

  5. Michalowska, M., Fiszer, U., Krygowska-Wajs, A., and Owczaresk, K., Falls in Parkinson’s disease. Causes and impact of patients’ quality of life. Funct. Neurol. 20(4):163–168, 2005.

    PubMed  Google Scholar 

  6. Synnott, J., et al., WiiPD-objective home assessment of Parkinson’s disease unsing the Nintendo Wii Remote. IEEE Trans. Inf. Technol. Biomed. 16(6):1304–1312, 2012.

    Article  PubMed  Google Scholar 

  7. Carne, W., Cifu, D. X., Marcinko, P., Baron, M., Pickett, T., Qutubuddin, A., et al., Efficacy of multidisciplinary treatment program on long-term outcomes of individuals with Parkinson’s disease. J. Rehabil. Res. Dev. 42:779–786, 2005.

    Article  PubMed  Google Scholar 

  8. Burke, J. W., et al., Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25:1085–1099, 2009.

    Article  Google Scholar 

  9. Krichevets, A. N., Sirotkina, E. B., Yevsevicheva, E. B., and Zeldin, L. M., Computer games as a means of movement rehabilitation. Disabil. Rehabil. 17(2):100–105, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. Burdea, G. C., Virtual rehabilitation-benefits and challenges. Methods Inf. Med. 42(5):519–523, 2003.

    CAS  PubMed  Google Scholar 

  11. Alamri, A., Jongeun, C., and El Saddik, A., AR-REHAB: An augmented reality framework for poststroke-patient rehabilitation. IEEE Trans. Instrum. Meas. 59(10):2554–2563, 2010.

    Article  Google Scholar 

  12. Milgram, P., and Kishino, F., A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77(12):1321–1329, 1994.

    Google Scholar 

  13. Burke, J. W., McNeill, M. D. J., Charles, D. K., Morrow, P. J., Crosbie, J. H., and McDonough, S. M., Serious games for upper limb rehabilitation following stroke. In: Proceedings of the Conference in Games and Virtual Worlds for Serious Applications, VS-GAMES’09, pp. 103–110, 2009.

  14. Albiol-Pérez, S., Gil-Gómez, J. A., Llorens, R., Alcañiz, M., and Font, C. C., The role of virtual motor rehabilitation: a quantitative analysis between acute and chronic patients with acquired brain injury. IEEE J. Biomed. Health Inform. 18:391–398, 2014.

    Article  PubMed  Google Scholar 

  15. Shih, C. H., Shih, C. T., and Chu, C. L., Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii balance board through controlling environmental stimulation. Res. Dev. Disabil. 31(4):936–942, 2010.

    Article  PubMed  Google Scholar 

  16. Shih, C. H., A standing location detector enabling people with developmental disabilities to control environmental stimulation through simple physical activities with Nintendo Wii Balance Boards. Res. Dev. Disabil. 32(2):699–704, 2011.

    Article  PubMed  Google Scholar 

  17. Esculier, J. F., Vaudrin, J., Bériault, P., Gagnon, K., and Tremblay, L. B., Home-based balance training proramme using Wii Fit with balance board for Parkinson’s disease: A pilot study. J. Rehabil. Med. 44:144–150, 2012.

    Article  PubMed  Google Scholar 

  18. Saposnik, G., Teasell, R., Mamdani, M., Thorpe, K. E., Hall, J., Cohen, L. G., et al., Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: A pilot randomized clinical trial and proof of principle. Stroke 41:1477–1484, 2010.

    Article  PubMed  Google Scholar 

  19. Clark, R. A., McGough, R., and Paterson, K., Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 34:288–291, 2011.

    Article  PubMed  Google Scholar 

  20. Lange, B., Chang, C. Y., Suma, E., Newman, B., Rizzo, A. S., and Bolas, M., Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. In: Proceedings of the IEEE Eng Med Biol Soc, pp. 1831–1834, 2011.

  21. Lozano-Quilis, J. A., Gil-Gomez, H., Gil-Gómez, J. A., Albiol-Perez, S., Palacios, G., Fardoum H. M., and Mashat, A. S., Virtual reality system for multiple sclerosis rehabilitation using KINECT. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 366–369, 2013.

  22. Chang, Y. J., Chen, S. F., and Huang, J. D., A kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6):2566–2570, 2011.

    Article  PubMed  Google Scholar 

  23. Palacios-Navarro, G., Albiol-Perez, S., Gil-Gómez, J. A., Lozano-Quilis, J. A., and Gil-Gomez, H., Working alliance and virtual motor rehabilitation in Parkinson patients. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 274–277, 2014.

  24. Sooklal, S., Mohan, P., and Teelucksingh, S., Using the Kinect for detecting tremors: Challenges and opportunities. In: Proceedings of the IEEE-EMBS international Conference on Biomedical and Health Informatics (BHI), pp. 768–771, 2014.

  25. Geman, O., Nonlinear dynamics, artificial neural networks and neuro-fuzzy classifier for automatic assessing of tremor severity. In: Proceedings of the E-Health and Bioengineering Conference (EHB), pp. 1–4, 2013.

  26. Rocha, A. P., Choupina, H., Fernandes, J. M., Rosas, M. J., Vaz, R., and Cunha, J. P. S., Parkinson’s disease assessment based on gait analysis using an innovative RGB-D camera system. In: Proceedings of the 36th Annual International Conference of Engineering in Medicine and Biology Society (EMBC), pp. 3126–3129, 2014.

  27. Pompeu, J. E., Arduini, L. A., Botelho, A. R., Fonseca, M. B. F., Pompeu, S. M. A. A., Torriani-Pasin, C., et al., Feasibility, safety and outcomes of playing Kinect Adventures!™ for people with Parkinson’s disease: a pilot study. Physiotherapy 100(2):162–168, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Galna, B., Jackson, D., Schofield, G., McNaney, R., Webster, M., Barry, G., et al., Retraining function in people with Parkinson’s disease using the Microsoft kinect: Game design and pilot testing. J. Neuroeng. Rehabil. 11(1):60, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Procházka, A., Schätz, M., Ťupa, O., Yadollahi, M., Vyšata, O., and Walls, M., The MS Kinect image and depth sensors use for gait features detection. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2271–2274, 2014.

  30. Cancela, J., Arredondo, M. T., and Hurtado, O., Proposal of a Kinect TM-based system for gait assessment and rehabilitation in Parkinson’s disease. In: Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4519–4522, 2014.

  31. Lee, J. D., Hsieh, C. H., and Lin, T. Y., A Kinect-based Tai Chi exercises evaluation system for physical rehabilitation. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), pp. 177–178, 2014.

  32. IEEE Recommended Practice for Software Requirements Specifications (IEEE Std 830–1998.1:40, 1998. doi:10.1109/IEEESTD.1998.88286.

  33. Folstein, M. F., Folstein, S. E., and McHugh, P. R., Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12:189–198, 1975.

    Article  CAS  PubMed  Google Scholar 

  34. Schenkman, M., Cutson, T. M., Kuchibhatla, M., Chandler, J., and Pieper, C., Reliability of impairment and physical performance measures for persons with Parkinson’s disease. Phys. Ther. 77(1):19–27, 1997.

    CAS  PubMed  Google Scholar 

  35. Helsinki declaration, Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, http://www.wma.net/en/30publications/10policies/b3/index.html.

  36. Fitts, P. M., The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47(6):381–391, 1954.

    Article  CAS  PubMed  Google Scholar 

  37. MacKenzie, I. S., Fitts’ law as a research and design tool in human computer interaction. Hum. Comput. Interact. 7:91–139, 1992.

    Article  Google Scholar 

  38. Smits-Engelsman, B., Rameckers, E., and Duysens, J., Children with congenital spastic hemiplegia obey Fitts’ law in a visually guided tapping task. Exp. Brain Res. 177(4):431–439, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. McCrea, P. H., and Eng, J. J., Consequences of increased neuromotor noise for reaching movements in persons with stroke. Exp. Brain Res. 162:70–77, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Christe, B., Burkhard, P. R., Pegna, A. J., Mayer, E., and Hauert, C. A., Clinical assessment of motor function: A processes oriented instrument based on a speed accuracy trade-off paradigm. Behav. Neurol. 18:19–29, 2007.

    Article  PubMed  Google Scholar 

  41. Hsu, J. K., Thibodeau, R., Wong, S. J., Zukiwsky, D., Cecile, S., and Walton, D. M., A “Wii” bit of fun: The effects of adding Nintendo Wii bowling to a standard exercise regimen for residents of long-term care with upper extremity dysfunction. Physiother. Theory Pract. 27:185–193, 2011.

    Article  PubMed  Google Scholar 

  42. Pompeu, J. E., Mendes, F. A. D., da Silva, K. G., Lobo, A. M., Oliveira, T. D., Zomignani, A. P., and Piemonte, M. E. P., Effect of Nintendo Wii (TM)-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: A randomised clinical trial. Physiotherapy 98:196–204, 2012.

    Article  PubMed  Google Scholar 

  43. Mendes, F. A. D., Pompeu, J. E., Lobo, A. M., da Silva, K. G., Oliveira, T. D., Zomignani, A. P., and Piemonte, M. E. P., Motor learning, retention and transfer after virtualreality-based training in Parkinson’s disease - effect of motor and cognitive demands of games: A longitudinal, controlled clinical study. Physiotherapy 98:217–223, 2012.

    Article  Google Scholar 

  44. Ebersbach, G., Ebersbach, A., Edler, D., Kaufhold, O., Kusch, M., Kupsch, A., et al., Comparing exercise in Parkinson’s disease–the Berlin LSVT®BIG study. Mov. Disord. 25(12):1902–1908, 2010.

    Article  PubMed  Google Scholar 

  45. Ebersbach, G., Grust, U., Ebersbach, A., Wegner, B., Gandor, F., and Kühn, A. A., Amplitude-oriented exercise in Parkinson’s disease: A randomized study comparing LSVT-BIG and a short training protocol. J. Neural Transm. 122(2):253–256, 2014.

    Article  PubMed  Google Scholar 

  46. Adkins, D., Boychuk, J., Remple, M., and Kleim, J., Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J. Appl. Physiol. 101:1776–1782, 2006.

    Article  PubMed  Google Scholar 

  47. Rochester, L., Baker, K., Hetherington, V., Jones, D., Willems, A. M., Kwakkel, G., Van Wegen, E., Lim, I., and Nieuwboer, A., Evidence for motor learning in Parkinson’s disease: Acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Res. 1319:103–111, 2010.

    Article  CAS  PubMed  Google Scholar 

  48. Nieuwboer, A., Kwakkel, G., Rochester, L., Jones, D., van Wegen, E., Willems, A., Chavret, F., Hetherington, V., Baker, K., and Lim, I., Cueing training in the home improves gait-related mobility in Parkinson’s disease: The RESCUE trial. J. Neurol. Neurosurg. Psychiatry 78:134–140, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kadivar, Z., Corcos, D., Foto, J., and Hondzinski, J., Effect of step training and rhythmical performance in Parkinson’s patients. Neurorehabil. Neural Repair 25(7):626–635, 2011.

    Article  PubMed  Google Scholar 

  50. Mak, M., and Hui-Chan, C., Cued task-specific training is better than exercise in improving sit-to-stand in patients with Parkinson’s disease: A randomized controlled trial. Mov. Disord. 23:501–509, 2008.

    Article  PubMed  Google Scholar 

  51. Marchese, R., Diverio, M., Zucchi, F., Lentino, C., and Abbruzzese, G., The role of sensory cues in the rehabilitation of Parkinsonian patients: A comparison of two physcial therapy protocols. Mov. Disord. 15:879–883, 2000.

    Article  CAS  PubMed  Google Scholar 

  52. Espay, A. J., Baram, Y., Kumar Dwivedi, A., Shukla, R., Gartner, M., Gaines, L., Duker, A. P., and Revilla, F. J., At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease. J. Rehabil. Res. Dev. 47(6):573–582, 2010.

    Article  PubMed  Google Scholar 

  53. Kaminsky, T. A., Dudgeon, B. J., Billingsley, F. F., Mitchell, P. H., and Weghorst, S. J., Virtual cues and functional mobility of people with Parkinson’s disease: A single-subject pilot study. J. Rehabil. Res. Dev. 44(3):437–448, 2007.

    Article  PubMed  Google Scholar 

  54. Griffin, H. J., Greenlaw, R., Limousin, P., Bhatia, K., Quinn, N. P., and Jahanshahi, M., The effect of real and virtual visual cues on walking in Parkinson’s disease. J. Neurol. 258:991–1000, 2011.

    Article  CAS  PubMed  Google Scholar 

  55. Caudron, S., Guerraz, M., Eusebio, A., Gros, J. P., Azulay, J. P., and Vaugoyeau, M., Evaluation of a visual biofeedback on the postural control in Parkinson’s disease. Clin. Neurophysiol. 44:77–86, 2014.

    Article  CAS  Google Scholar 

  56. Baram, Y., Aharon-Peretz, J., Simionovici, Y., and Ron, L., Walking on virtual tiles. Neural. Process. Lett. 16:227–233, 2002.

    Article  Google Scholar 

  57. Villalba, M. T., Fernández-Sanz, L., and Martínez, J. J., Empirical support for the generation of domain-oriented quality models. IET Softw. 4(1):1–14, 2010.

    Article  Google Scholar 

  58. Villalba, M. T., Fernández-Sanz, L., Cuadrado-Gallego, J. J., and Martínez, J. J., Software quality evaluation for security COTS products. Int. J. Softw. Eng. Knowl. Eng. 20(1):27–48, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

The researching group wants to thank the participants and their caregivers for their generous collaboration in the project. This contribution was partially funded by the Gobierno de Aragón, Departamento de Industria e Innovación, y Fondo Social Europeo “Construyendo Europa desde Aragón”. Authors gratefully acknowledge the support of Prometeo Project, Secretaría de Educación Superior, Ciencia, Tecnología e Innovación from Ecuador.

Competing interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Palacios-Navarro.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios-Navarro, G., García-Magariño, I. & Ramos-Lorente, P. A Kinect-Based System for Lower Limb Rehabilitation in Parkinson’s Disease Patients: a Pilot Study. J Med Syst 39, 103 (2015). https://doi.org/10.1007/s10916-015-0289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0289-0

Keywords

Navigation