Skip to main content

Advertisement

Log in

Cloud-Based Smart Health Monitoring System for Automatic Cardiovascular and Fall Risk Assessment in Hypertensive Patients

  • Mobile Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to describe the design and the preliminary validation of a platform developed to collect and automatically analyze biomedical signals for risk assessment of vascular events and falls in hypertensive patients. This m-health platform, based on cloud computing, was designed to be flexible, extensible, and transparent, and to provide proactive remote monitoring via data-mining functionalities. A retrospective study was conducted to train and test the platform. The developed system was able to predict a future vascular event within the next 12 months with an accuracy rate of 84 % and to identify fallers with an accuracy rate of 72 %. In an ongoing prospective trial, almost all the recruited patients accepted favorably the system with a limited rate of inadherences causing data losses (<20 %). The developed platform supported clinical decision by processing tele-monitored data and providing quick and accurate risk assessment of vascular events and falls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fortino G, Pathan M, Di Fatta G, editors. BodyCloud: Integration of Cloud Computing and body sensor networks. Cloud Computing Technology and Science (CloudCom), 2012 I.E. 4th International Conference on; 2012 3–6 Dec. 2012.

  2. Hsieh, J. C., and Hsu, M. W., A cloud computing based 12-lead ECG telemedicine service. BMC Med Inform Decis Mak. 12:77, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Pandey, S., Voorsluys, W., Niu, S., Khandoker, A., and Buyya, R., An autonomic cloud environment for hosting ECG data analysis services. Future Generation Computer Systems 28(1):147–54, 2012.

    Article  Google Scholar 

  4. Baig, M. M., and Gholamhosseini, H., Smart health monitoring systems: an overview of design and modeling. J Med Syst 37(2):9898, 2013.

    Article  PubMed  Google Scholar 

  5. Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., et al., Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17(3):354–81, 1996.

    Article  Google Scholar 

  6. Guzzetti, S., Magatelli, R., Borroni, E., and Mezzetti, S., Heart rate variability in chronic heart failure. Autonomic Neuroscience-Basic & Clinical 90(1–2):102–5, 2001.

    Article  CAS  Google Scholar 

  7. Aronson, D., Mittleman, M. A., and Burger, A. J., Measures of heart period variability as predictors of mortality in hospitalized patients with decompensated congestive heart failure. Am J Cardiol 93(1):59–63, 2004.

    Article  PubMed  Google Scholar 

  8. Hadase, M., Azuma, A., Zen, K., Asada, S., Kawasaki, T., Kamitani, T., et al., Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circulation Journal 68(4):343–7, 2004.

    Article  PubMed  Google Scholar 

  9. Smilde, T. D. J., van Veldhuisen, D. J., and van den Berg, M. P., Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure. Clinical Research in Cardiology 98(4):233–9, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. Melillo, P., Bracale, M., and Pecchia, L., Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination. Biomed Eng Online 10(1):96, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Melillo, P., De Luca, N., Bracale, M., and Pecchia, L., Classification Tree for Risk Assessment in Patients Suffering From Congestive Heart Failure via Long-Term Heart Rate Variability. IEEE J Biomed Health Inform 17(3):727–33, 2013.

    Article  PubMed  Google Scholar 

  12. Melillo, P., Fusco, R., Sansone, M., Bracale, M., and Pecchia, L., Discrimination power of long-term heart rate variability measures for chronic heart failure detection. Med Biol Eng Comput 49(1):67–74, 2011.

    Article  PubMed  Google Scholar 

  13. Pecchia, L., Melillo, P., and Bracale, M., Remote health monitoring of heart failure with data mining via CART method on HRV features. IEEE Trans Bio Med Eng 58(3):800–4, 2011.

    Article  Google Scholar 

  14. Pecchia, L., Melillo, P., Sansone, M., and Bracale, M., Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Trans Inf Technol Biomed 15(1):40–6, 2011.

    Article  PubMed  Google Scholar 

  15. Melillo, P., Izzo, R., Luca, N., and Pecchia, L., Heart rate variability and target organ damage in hypertensive patients. BMC Cardiovasc Disord 12(1):105, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ramirez-Villegas, J. F., Lam-Espinosa, E., Ramirez-Moreno, D. F., Calvo-Echeverry, P. C., and Agredo-Rodriguez, W., Heart rate variability dynamics for the prognosis of cardiovascular risk. PLoS One 6(2):e17060, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Singh A, Guttag JV, editors. A comparison of non-symmetric entropy-based classification trees and support vector machine for cardiovascular risk stratification. Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE; 2011 Aug. 30 2011-Sept. 3 2011.

  18. Song, T., Qu, X. F., Zhang, Y. T., Cao, W., Han, B. H., Li, Y., et al., Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction. BMC Cardiovasc Disord 14(1):59, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ebrahimzadeh, E., Pooyan, M., and Bijar, A., A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PLoS One 9(2), e81896, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Isik, M., Cankurtaran, M., Yavuz, B. B., Deniz, A., Yavuz, B., Halil, M., et al., Blunted baroreflex sensitivity: An underestimated cause of falls in the elderly? European Geriatric Medicine 3(1):9–13, 2012.

    Article  Google Scholar 

  21. Melillo P, Jovic A, De Luca N, Morgan SP, Pecchia L, editors. Automatic Prediction of Falls via Heart Rate Variability and Data Mining in Hypertensive Patients: The SHARE Project Experience. 6th European Conference of the International Federation for Medical and Biological Engineering; 2015: Springer.

  22. Melillo P, Scala P, De Luca N, Pecchia L, editors. Automatic Prediction of Vascular Events by Heart Rate Variability Analysis in Hypertensive Patients. 6th European Conference of the International Federation for Medical and Biological Engineering; 2015: Springer.

  23. Sannino G, Melillo P, De Pietro G, Stranges S, Pecchia L. To What Extent It Is Possible to Predict Falls due to Standing Hypotension by Using HRV and Wearable Devices? Study Design and Preliminary Results from a Proof-of-Concept Study. Ambient Assisted Living and Daily Activities. Springer; 2014. p. 167–70.

  24. Sannino G, Melillo P, De Pietro G, Stranges S, Pecchia L. Blood pressure drop prediction by using HRV measurements in orthostatic hypotension. J Med Syst. 2015

  25. Sannino G, Melillo P, De Pietro G, Stranges S, Pecchia L. Short term heart rate variability to predict blood pressure drops due to standing: a pilot study. BMC Med. Inform. Decis. Mak. 2015. 15(Suppl 3):S2 doi:10.1186/1472-6947-15-S3-S2.

  26. Rubenstein, L. Z., Falls in older people: epidemiology, risk factors and strategies for prevention. Age and ageing 35(Suppl 2):ii37–ii41, 2006.

    PubMed  Google Scholar 

  27. Siracuse, J. J., Odell, D. D., Gondek, S. P., Odom, S. R., Kasper, E. M., Hauser, C. J., et al., Health care and socioeconomic impact of falls in the elderly. American journal of surgery 203(3):335–8, 2012.

    Article  PubMed  Google Scholar 

  28. Wild, D., Nayak, U., and Isaacs, B., How dangerous are falls in old people at home? British medical journal (Clinical research ed) 282(6260):266, 1981.

    Article  CAS  Google Scholar 

  29. Melillo, P., Izzo, R., Orrico, A., Scala, P., Attanasio, M., Mirra, M., et al., Automatic Prediction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analysis. PLoS ONE 10(3):e0118504, 2015.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tseng, K. C., Hsu, C. L., and Chuang, Y. H., Designing an intelligent health monitoring system and exploring user acceptance for the elderly. J Med Syst 37(6):9967, 2013.

    Article  PubMed  Google Scholar 

  31. Ramshur J. Design, Evaluation and application of Heart rate variability software. 2010.

  32. Niskanen, J.-P., Tarvainen, M. P., Ranta-aho, P. O., and Karjalainen, P. A., Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine 76(1):73–81, 2004.

    Article  PubMed  Google Scholar 

  33. Brennan, M., Palaniswami, M., and Kamen, P., Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Bio Med Eng 48(11):1342–7, 2001.

    Article  CAS  Google Scholar 

  34. Richman, J. S., and Moorman, J. R., Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology 278(6):H2039–H49, 2000.

    CAS  PubMed  Google Scholar 

  35. Carvajal, R., Wessel, N., Vallverdú, M., Caminal, P., and Voss, A., Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Computer Methods and Programs in Biomedicine 78(2):133–40, 2005.

    Article  PubMed  Google Scholar 

  36. Penzel, T., Kantelhardt, J. W., Grote, L., Peter, J. H., and Bunde, A., Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans Bio Med Eng 50(10):1143–51, 2003.

    Article  Google Scholar 

  37. Zbilut, J. P., Thomasson, N., and Webber, C. L., Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Medical Engineering & Physics 24(1):53–60, 2002.

    Article  Google Scholar 

  38. Kuncheva LI, Rodríguez JJ. An experimental study on rotation forest ensembles. Multiple Classifier Systems. Springer; 2007. p. 459–68.

  39. Garcia, J., Martinez, I., Sornmo, L., Olmos, S., Mur, A., and Laguna, P., Remote processing server for ECG-based clinical diagnosis support. IEEE Trans Inf Technol Biomed 6(4):277–84, 2002.

    Article  PubMed  Google Scholar 

  40. Melillo P, Jovic A, Luca ND, Pecchia L. Automatic classifier based on heart rate variability to identify fallers among hypertensive subjects. Healthcare Technology Letters 2015. doi:10.1049/htl.2015.0012.

  41. Pecchia L, Melillo P, Stranges S, De Pietro G, G S, inventors; Autonomous Nervous System status detection to predict falls including Heart Rate Variability (HRV) assessment 2014.

  42. Melillo P, Orrico A, Attanasio M, Rossi S, Pecchia L, Chirico F et al. A pilot study for development of a novel tool for clinical decision making to identify fallers among ophthalmic patients. BMC Med. Inform. Decis. Mak. 15(Suppl 3):S6, 2015. doi:10.1186/1472-6947-15-S3-S6.

Download references

Acknowledgments

The current study was partially supported by “the 2007–2013 NOP for Research and Competitiveness for the Convergence Regions (Calabria, Campania, Puglia and Sicilia)” with code PON04a3_00139 - Project Smart Health and Artificial intelligence for Risk Estimation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Melillo.

Additional information

This article is part of the Topical Collection on Mobile Systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melillo, P., Orrico, A., Scala, P. et al. Cloud-Based Smart Health Monitoring System for Automatic Cardiovascular and Fall Risk Assessment in Hypertensive Patients. J Med Syst 39, 109 (2015). https://doi.org/10.1007/s10916-015-0294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0294-3

Keywords

Navigation