Skip to main content

Advertisement

Log in

Three-Dimensional Path Planning and Guidance of Leg Vascular Based on Improved Ant Colony Algorithm in Augmented Reality

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Preoperative path planning plays a critical role in vascular access surgery. Vascular access surgery has superior difficulties and requires long training periods as well as precise operation. Yet doctors are on different leves, thus bulky size of blood vessels is usually chosen to undergo surgery and other possible optimal path is not considered. Moreover, patients and surgeons will suffer from X-ray radiation during the surgical procedure. The study proposed an improved ant colony algorithm to plan a vascular optimal three-dimensional path with overall consideration of factors such as catheter diameter, vascular length, diameter as well as the curvature and torsion. To protect the doctor and patient from exposing to X-ray long-term, the paper adopted augmented reality technology to register the reconstructed vascular model and physical model meanwhile, locate catheter by the electromagnetic tracking system and used Head Mounted Display to show the planning path in real time and monitor catheter push procedure. The experiment manifests reasonableness of preoperative path planning and proves the reliability of the algorithm. The augmented reality experiment real time and accurately displays the vascular phantom model, planning path and the catheter trajectory and proves the feasibility of this method. The paper presented a useful and feasible surgical scheme which was based on the improved ant colony algorithm to plan vascular three-dimensional path in augmented reality. The study possessed practical guiding significance in preoperative path planning, intraoperative catheter guiding and surgical training, which provided a theoretical method of path planning for vascular access surgery. It was a safe and reliable path planning approach and possessed practical reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dorigo, M., Maniezzo, V., and Colomi, A., Positive feedback as a search strategy. Technical Report 91–106, Dipartmento di Elettronica, Polotecnico di Milano, IT, 1991.

  2. Kavitha, G., and Ramakrishnan, S., An approach to identify optic disc in human retinal images using ant colony optimization method. J Med Syst 34(5):809–813, 2010. doi:10.1007/s10916-009-9295-4.

    Article  PubMed  Google Scholar 

  3. Suganthi, M., and Madheswaran, M., An improved medical decision support system to identify the breast cancer using mammogram. J Med Syst 36(1):79–91, 2012. doi:10.1007/s10916-010-9448-5.

    Article  PubMed  Google Scholar 

  4. Rizk, C., and Arnaout, J., ACO for the surgical cases assignment problem. J Med Syst 36(3):1891–1899, 2012. doi:10.1007/s10916-010-9648-z.

    Article  PubMed  Google Scholar 

  5. Xiao, Q., Wang, Y., and Gao, S., et al. 3D path planning based on elevation model and ant colony algorithm. Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2013 5th International c. 1:74–77, 2013. doi:10.1109/IHMSC.2013.25.

  6. Buzhinsky, I. P., Ulyantsev, V. I., and Chivilikhin, D. S., Inducing finite state machines from training samples using ant colony optimization. J Comput Syst Sci Int 53(2):256–266, 2014. doi:10.1134/S106423071402004X.

    Article  Google Scholar 

  7. Aghababa, M. P., 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Appl Ocean Res 38:48–62, 2012.

    Article  Google Scholar 

  8. Dini, M., and Tabesh, M., A new method for simultaneous calibration of demand pattern and Hazen-Williams coefficients in water distribution systems. Water Resour Manag 28(7):2021–2034, 2014. doi:10.1007/s11269-014-0592-4.

    Article  Google Scholar 

  9. Yanfeng, Q., and Dan, J., Three dimensional pipe path planning based on dynamic ant colony algorithm. J of Donghua Univ (Nat Sci) 37(23):4–7, 2011.

    Google Scholar 

  10. Hsu, C.-H., and Juang, C.-F., Multi-objective continuous-ant-colony-optimized fc for robot wall-following control. Comput Intell Mag IEEE 8(3):28–40, 2013. doi:10.1109/MCI.2013.2264233.

    Article  Google Scholar 

  11. Hui, H., and Xiushan, C., An improved ant colony algorithm for three-dimensional path planning of robots. Comput Eng Sci 34(11):153–157, 2012.

    Google Scholar 

  12. Xiangjun, G., and Keling, Y., Study of path planning algorithm for virtual endoscopy. Appl Res Comput 28(3):823–827, 2011. doi:10.3109/13645706.2010.481402.

    Google Scholar 

  13. Belharet, K., Folio, D., and Ferreira, A., MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules. Minim Invasive Ther Allied Technol 19(3):157–169, 2010.

    Article  PubMed  Google Scholar 

  14. Paik, D. S., Beaulieu, C. F., Brooke Jeffrey, R., et al., Automated flight path planning for virtual endoscopy. Med Phys 25(5):629–637, 1998. doi:10.1118/1.598244.

    Article  CAS  PubMed  Google Scholar 

  15. Yang-jun, P., Ming-xiang, H., and Xin-ming, L., et al, Realization technologies in a virtual endoscopy system. Educ. Technol. Comput. Sci. Second. Int. Workshop. 43–46, 2010. doi:10.1109/ETCS.2010.175.

  16. Chuang, J., Tsai, C., and Ko, M., Skeletonization of three-dimensional object using generalized potential field. IEEE Trans Pattern Anal Mach Intell 22(11):1241–1251, 2000. doi:10.1109/34.888709.

    Article  Google Scholar 

  17. van Uitert, R. L., and Summers, R. M., Automatic correction of level set based subvoxel precise centerlines for virtual colonoscopy using the colon outer wall. IEEE Trans Med Imaging 26(8):1069–1078, 2007. doi:10.1109/TMI.2007.896927.

    Article  PubMed  Google Scholar 

  18. Kiraly, A. P., Helferty, J. P., Hoffman, E. A., et al., Three-dimensional path planning for virtual bronchoscopy. IEEE Trans Med Imaging 23(11):1365–1379, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Sun, K., Chen, Z., Jiang, S., et al., Morphological multiscale enhancement, fuzzy filter and watershed for vascular tree extraction in angiogram. J Med Syst 35(5):811–824, 2011. doi:10.1007/s10916-010-9466-3.

    Article  PubMed  Google Scholar 

  20. Wink, O., Niessen, W. J., and Viergever, M, A., Minimum cost path determination using a simple heuristic function. Pattern Recognition, 2000. Proceedings. 15th International Conference on. 3:998–1001, 2000. doi:10.1109/ICPR.2000.903713.

  21. D S, W H, and W W, et al. Design of the image-guided biopsy marking system for gastroscopy. J. Med. Syst. 36(5):2909–2920, 2012. doi:10.1007/s10916-011-9769-z.

  22. Castro, M., Goksu, C., and Haigron, P., et al, Estimation of 2D/3D rigid transformation for Computer-assisted Endovascular Navigation. Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd Int. Conf. IEEE. 1–6, 2008. doi:10.1109/ICTTA.2008.4530106.

  23. Kaladji, A., Dumenil, A., Castro, M., et al., Prediction of deformations during endovascular aortic aneurysm repair using finite element simulation. Comput Med Imaging Graph 37(2):142–149, 2013. doi:10.1016/j.compmedimag.2013.03.002.

    Article  PubMed  Google Scholar 

  24. Cheng, I., Shen, R., and Moreau, R., et al, An augmented reality framework for optimization of computer assisted navigation in endovascular surgery. Engineering in Medicine and Biology Society (EMBC). 36th Ann. Int. Conf. IEEE. 5647–5650, 2014. doi:10.1109/EMBC.2014.6944908.

  25. Oeltze, S., and Preim, B. 3D visualization of vasculature: an overview. Vis. Med. Life. Sci. 19–39, 2007. doi:10.1007/978-3-540-72630-2_3.

  26. Antiga, L., Ene-Iordache, B., and Remuzzi, A., Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Trans Med Imaging 22(5):674–684, 2003. doi:10.1109/TMI.2003.812261.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai International Cooperation Fund Project of Shanghai Science and Technology Committee (No.12510708400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-min Chen.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Mk., Chen, Ym., Liu, Q. et al. Three-Dimensional Path Planning and Guidance of Leg Vascular Based on Improved Ant Colony Algorithm in Augmented Reality. J Med Syst 39, 133 (2015). https://doi.org/10.1007/s10916-015-0315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0315-2

Keywords

Navigation