Skip to main content

Advertisement

Log in

Mild Depression Detection of College Students: an EEG-Based Solution with Free Viewing Tasks

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Depression is a common mental disorder with growing prevalence; however current diagnoses of depression face the problem of patient denial, clinical experience and subjective biases from self-report. By using a combination of linear and nonlinear EEG features in our research, we aim to develop a more accurate and objective approach to depression detection that supports the process of diagnosis and assists the monitoring of risk factors. By classifying EEG features during free viewing task, an accuracy of 99.1 %, which is the highest to our knowledge by far, was achieved using kNN classifier to discriminate depressed and non-depressed subjects. Furthermore, through correlation analysis, comparisons of performance on each electrode were discussed on the availability of single channel EEG recording depression detection system. Combined with wearable EEG collecting devices, our method offers the possibility of cost effective wearable ubiquitous system for doctors to monitor their patients with depression, and for normal people to understand their mental states in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brundtland, G. H., From the world health organization. Mental health: new understanding, new hope. JAMA 286(19):2391, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Bromet, E., et al., Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Beck, A. T., Steer, R. A., and Carbin, M. G., Psychometric properties of the beck depression inventory: twenty-five years of evaluation. Clin. Psychol. Rev. 8(1):77–100, 1988.

    Article  Google Scholar 

  4. Mundt, J. C., et al., Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology. J. Neurolinguistics 20(1):50–64, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lehmann, C., et al., Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 161(2):342–350, 2007.

    Article  PubMed  Google Scholar 

  6. Grin-Yatsenko, V. A., et al., EEG power spectra at early stages of depressive disorders. J. Clin. Neurophysiol. 26(6):401–406, 2009.

    Article  PubMed  Google Scholar 

  7. Grin-Yatsenko, V. A., et al., Independent component approach to the analysis of EEG recordings at early stages of depressive disorders. Clin. Neurophysiol. 121(3):281–289, 2010.

    Article  PubMed  Google Scholar 

  8. Bhattacharya, J., Complexity analysis of spontaneous EEG. Acta Neurobiol. Exp. 60(4):495–502, 2000.

    CAS  Google Scholar 

  9. Hosseinifard, B., Moradi, M. H., and Rostami, R., Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Prog. Biomed. 109(3):339–345, 2013.

    Article  Google Scholar 

  10. Nicolaou, N., and Georgiou, J., Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1):202–209, 2012.

    Article  Google Scholar 

  11. Knott, V., et al., EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. Neuroimaging 106(2):123–140, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y., et al. More normal EEGs of depression patients during mental arithmetic than rest. In: Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007. NFSI-ICFBI 2007. Joint Meeting of the 6th International Symposium on. 2007. IEEE.

  13. Li, Y.-J., Classification of schizophrenia and depression by EEG with ANNs*. In: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference. (pp. 2679–2682) 2005. IEEE.

  14. Eizenman, M., et al., A naturalistic visual scanning approach to assess selective attention in major depressive disorder. Psychiatry Res. 118(2):117–128, 2003.

    Article  PubMed  Google Scholar 

  15. Kellough, J. L., et al., Time course of selective attention in clinically depressed young adults: an eye tracking study. Behav. Res. Ther. 46(11):1238–1243, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gong, X., et al., Revision of the Chinese facial affective picture system. Chin. Ment. Health J. 25:40–46, 2011.

    Google Scholar 

  17. Hall, M.A., Correlation-Based Feature Selection for Machine Learning. The University of Waikato, 1999.

  18. Cover, T., and Hart, P., Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1):21–27, 1967.

    Article  Google Scholar 

  19. Le Cessie, S., and Van Houwelingen, J., Ridge estimators in logistic regression. Appl. Stat. 41(1):191–201, 1992.

  20. Cortes, C., and Vapnik, V., Support-vector networks. Mach. Learn. 20(3):273–297, 1995.

    Google Scholar 

  21. John, G.H. and Langley, P., Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995.

  22. Amit, Y., and Geman, D., Shape quantization and recognition with randomized trees. Neural Comput. 9(7):1545–1588, 1997.

    Article  Google Scholar 

  23. Hinrikus, H., et al., Electroencephalographic spectral asymmetry index for detection of depression. Med. Biol. Eng. Comput. 47(12):1291–1299, 2009.

    Article  PubMed  Google Scholar 

  24. Barry, R. J., et al., EEG coherence in attention-deficit/hyperactivity disorder: a comparative study of two DSM-IV types. Clin. Neurophysiol. 113(4):579–585, 2002.

    Article  PubMed  Google Scholar 

  25. Li, Y., et al., Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 119(6):1232–1241, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (No.2014CB744600), the National Natural Science Foundation of China (grant No.60973138, grant No.61003240), the International Cooperation Project of Ministry of Science and Technology (No.2013DFA11140), the National Basic Research Program of China (973 Program) (No.2011CB711000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hu, B., Shen, J. et al. Mild Depression Detection of College Students: an EEG-Based Solution with Free Viewing Tasks. J Med Syst 39, 187 (2015). https://doi.org/10.1007/s10916-015-0345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0345-9

Keywords

Navigation