Skip to main content

Advertisement

Log in

A Computer-Aided Diagnosis Scheme For Detection Of Fatty Liver In Vivo Based On Ultrasound Kurtosis Imaging

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Fatty liver disease is a common disease caused by alcoholism, obesity, and diabetes, resulting in triglyceride accumulation in hepatocytes. Kurtosis coefficient, a measure of the peakedness of the probability distribution, has been applied to the analysis of backscattered statistics for characterizing fatty liver. This study proposed ultrasound kurtosis imaging as a computer-aided diagnosis (CAD) method to visually and quantitatively stage the fatty liver. A total of 107 patients were recruited to participate in the experiments. The livers were scanned using a clinical ultrasound scanner with a 3.5-MHz curved transducer to acquire the raw ultrasound backscattered signals for kurtosis imaging. The kurtosis image was constructed using the sliding window technique. Experimental results showed that kurtosis imaging has the ability to visualize and quantify the variation of backscattered statistics caused by fatty infiltration. The kurtosis coefficient corresponding to liver parenchyma decreased from 5.41 ± 0.89 to 3.68 ± 0.12 with increasing the score of fatty liver from 0 (normal) to 3 (severe), indicating that fatty liver reduces the degree of peakedness of backscattered statistics. The best performance of kurtosis imaging was found when discriminating between normal and fatty livers with scores ≥1: the area under the curve (AUC) is 0.92 at a cutoff value of 4.36 (diagnostic accuracy =86.9 %, sensitivity =86.7 %, specificity =87.0 %). The current findings suggest that kurtosis imaging may be useful in designing CAD tools to assist in physicians in early detection of fatty liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamer, O.W., Aguirre, D.A., Casola, G., Lavine, J.E., Woenckhaus, M., and Sirlin, G.B., Fatty liver: imaging patterns and pitfalls. Radiographics. 26:1637–1653, 2006.

    Article  PubMed  Google Scholar 

  2. Sumida, Y., Nakajima, A., and Itoh, Y., Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20:475–485, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nalbantoglu, I.L., and Brunt, E.M., Role of liver biopsy in nonalcoholic fatty liver disease. World J. Gastroenterol. 20:9026–9037, 2014.

    PubMed  PubMed Central  Google Scholar 

  4. Chan, D.F., Li, A.M., Chu, W.C., Chan, M.H., Wong, E.M., Liu, E.K., Chan, I.H., Yin, J., Lam, C.W., Fok, T.F., and Nelson, E.A., Hepatic steatosis in obese Chinese children. Int. J. Obes. Relat. Metab. Disord. 28:1257–1263, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Thijssen, J.M., Starke, A., Weijers, G., Haudum, A., Herzog, K., Wohlsein, P., Rehage, J., and De Korte, C.L., Computer-aided B-mode ultrasound diagnosis of hepatic steatosis: a feasibility study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55:1343–1354, 2008.

    Article  PubMed  Google Scholar 

  6. Ho, M.C., Lee, Y.H., Jeng, Y.M., Chen, C.N., Chang, K.J., and Tsui, P.H., Relationship between ultrasound backscattered statistics and the concentration of fatty droplets in livers: an animal study. PloS One. 8:e63543, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Subramanya, M.B., Kumar, V., Mukherjee, S., and Saini, M., A CAD system for B-mode fatty liver ultrasound images using texture features. J. Med. Eng. Technol. 39:123–130, 2015.

    Article  PubMed  CAS  Google Scholar 

  8. Ghoshal, G., Lavarello, R.J., Kemmerer, J.P., Miller, R.J., and Oelze, M.L., Ex vivo study of quantitative ultrasound parameters in fatty rabbit livers. Ultrasound Med. Biol. 38:2238–2248, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shankar, P.M., A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47:727–736, 2000.

    Article  Google Scholar 

  10. Zhou, Z., Huang, C.C., Shung, K.K., Tsui, P.H., Fang, J., Ma, H.Y., Wu, S., and Lin, C.C., Entropic imaging of cataract lens: an in vitro study. PLoS One. 9:e96195, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kuc, R., Ultrasonic tissue characterization using kurtosis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 33:273–279, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Xie, X., Luo, Y., Quan, J., Chen, K., and Lin, J., SD rats' fatty liver tissue classification based on ultrasound radiofrequency signal. In: Jin, D., and Lin, S. (Eds.), Advances in computer science and information engineering. Springer-Verlag, Berlin Heidelberg, Germany, pp. 643–647, 2012.

    Chapter  Google Scholar 

  13. Suzuki, K., Hayashi, N., Sasaki, Y., Kono, M., Kasahara, A., Imai, Y., Fusamoto, H., and Kamada, T., Evaluation of structural change in diffuse liver disease with frequency domain analysis of ultrasound. Hepatology. 17:1041–1046, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Wan, Y.L., Tai, D.I., Chiang, B.H., Ma, H.Y., Chen, C.K., and Tsui, P.H., Effects of fatty infiltration in human livers on the backscattered statistics of ultrasound imaging. Proc. Inst. Mech. Eng. H. - J. Eng. Med. 229:419–428, 2015.

    Article  Google Scholar 

  15. Li, M.L., Li, D.W., Liu, H.L., Lin, M.S., Ultrasonic Nakagami visualization of HIFU-induced thermal lesions. In: IEEE Ultrasonics Symposium (IUS), IEEE, pp. 2251–2253. San Diego, 2010.

  16. Yang, X., Rossi, P., Bruner, D.W., Tridandapani, S., Shelton, J., and Liu, T., Noninvasive evaluation of vaginal fibrosis following radiotherapy for gynecologic malignancies: a feasibility study with ultrasound B-mode and nakagami parameter imaging. Med. Phys. 40:022901, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tsui, P.H., and Chang, C.C., Imaging local scatterer concentrations by the nakagami statistical model. Ultrasound Med. Biol. 33:608–619, 2007.

    Article  PubMed  Google Scholar 

  18. Tsui, P.H., Ma, H.Y., Zhou, Z., Ho, M.C., and Lee, Y.H., Window-modulated compounding nakagami imaging for ultrasound tissue characterization. Ultrasonics. 54:1448–1459, 2014.

    Article  PubMed  Google Scholar 

  19. Liao, Y.Y., Li, C.H., Tsui, P.H., Chang, C.C., Kuo, W.H., Chang, K.J., and Yeh, C.K., Discrimination of breast microcalcifications using a strain-compounding technique with ultrasound speckle factor imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61:955–965, 2014.

    Article  PubMed  Google Scholar 

  20. Osawa, H., and Mori, Y., Sonographic diagnosis of fatty liver using a histogram technique that compares liver and renal cortical echo amplitudes. J. Clin. Ultrasound. 24:25–29, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Cloutier, G., Daronatand, M., Savery, D., Garcia, D., Durand, L.G., and Foster, F.S., Non-gaussian statistics and temporal variations of the ultrasound signal backscattered by blood at frequencies between 10 and 58 MHz. J. Acoust. Soc. Am. 116:566–577, 2004.

    Article  PubMed  Google Scholar 

  22. Ehman, R.L., Science to practice: can MR elastography be used to detect early steatohepatitis in fatty liver disease? Radiology. 253:1–3, 2009.

    Article  PubMed  Google Scholar 

  23. Charlton, M., Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin. Gastroenterol. Hepatol. 2:1048–1058, 2004.

    Article  PubMed  Google Scholar 

  24. Adams, L.A., Angulo, P., and Lindor, K.D., Nonalcoholic fatty liver disease. Can. Med. Assoc. J. 172:899–905, 2005.

    Article  Google Scholar 

  25. Chen, J., Talwalkar, J.A., Yin, M., Glaser, K.J., Sanderson, S.O., and Ehman, R.L., Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology. 259:749–756, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nadarajah, S., Statistical distributions of potential interest in ultrasound speckle analysis. Phys. Med. Biol. 52:N213–N227, 2007.

    Article  PubMed  Google Scholar 

  27. Nillesen, M.M., Lopata, R.G., Gerrits, I.H., Kapusta, L., Thijssen, J.M., and de Korte, C.L., Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound Med. Biol. 34:674–680, 2008.

    Article  PubMed  Google Scholar 

  28. Destrempes, F., and Cloutier, G., A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope. Ultrasound Med. Biol. 36:1037–1051, 2010.

    Article  PubMed  Google Scholar 

  29. Mamou, J., Coron, A., Oelze, M.L., Saegusa-Beecroft, E., Hata, M., Lee, P., Machi, J., Yanagihara, E., Laugier, P., and Feleppa, E.J., Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes. Ultrasound Med. Biol. 37:345–357, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shankar, P.M., A statistical model for the ultrasonic backscattered echo from tissue containing microcalcifications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60:932–942, 2013.

    Article  PubMed  CAS  Google Scholar 

  31. Larrue, A., and Noble, J.A., Modeling of errors in nakagami imaging: illustration on breast mass characterization. Ultrasound Med. Biol. 40:917–930, 2014.

    Article  PubMed  Google Scholar 

  32. Tsui, P.H., Wan, Y.L., and Chen, C.K., Ultrasound imaging of the larynx and vocal folds: recent applications and developments. Curr. Opin. Otolaryngol. Head Neck Surg. 20:437–442, 2012.

    Article  PubMed  Google Scholar 

  33. Tsui, P.H., and Wang, S.H., The effect of transducer characteristics on the estimation of nakagami paramater as a function of scatterer concentration. Ultrasound Med. Biol. 30:1345–1353, 2004.

    Article  PubMed  Google Scholar 

  34. Toyoda, H., Kumada, T., Kamiyama, N., Shiraki, K., Takase, K., Yamaguchi, T., and Hachiya, H., B-mode ultrasound with algorithm based on statistical analysis of signals: evaluation of liver fibrosis in patients with chronic hepatitis C. Am. J. Roentgenol. 193:1037–1043, 2009.

    Article  Google Scholar 

  35. Kramer, C., Jaspers, N., Nierhoff, D., Kuhr, K., Bowe, A., Goeser, T., and Michels, G., Acoustic structure quantification ultrasound software proves imprecise in assessing liver fibrosis or cirrhosis in parenchymal liver diseases. Ultrasound Med. Biol. 40:2811–2818, 2014.

    Article  PubMed  Google Scholar 

  36. Lin, S.C., Heba, E., Wolfson, T., Ang, B., Gamst, A., Han, A., Erdman Jr., J.W., O'Brien Jr., W.D., Andre, M.P., Sirlin, C.B., and Loomba, R., Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound technique. Clin. Gastroenterol. Hepatol. 13:1337–1345, 2015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology (Taiwan) under Grant No. MOST 103-2221-E-182-001-MY3 and the Chang Gung Memorial Hospital (Linkou, Taiwan) under Grant Nos. CIRPD1E0021, CMRPD1C0711, and CMRPD1C0661.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Liang Wan or Po-Hsiang Tsui.

Additional information

Hsiang-Yang Ma and Zhuhuang Zhou contributed equally to this work.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, HY., Zhou, Z., Wu, S. et al. A Computer-Aided Diagnosis Scheme For Detection Of Fatty Liver In Vivo Based On Ultrasound Kurtosis Imaging. J Med Syst 40, 33 (2016). https://doi.org/10.1007/s10916-015-0395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0395-z

Keywords

Navigation