Skip to main content

Advertisement

Log in

Chaotic Visual Cryptosystem Using Empirical Mode Decomposition Algorithm for Clinical EEG Signals

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper, proposes a chaotic visual cryptosystem using an empirical mode decomposition (EMD) algorithm for clinical electroencephalography (EEG) signals. The basic design concept is to integrate two-dimensional (2D) chaos-based encryption scramblers, the EMD algorithm, and a 2D block interleaver method to achieve a robust and unpredictable visual encryption mechanism. Energy-intrinsic mode function (IMF) distribution features of the clinical EEG signal are developed for chaotic encryption parameters. The maximum and second maximum energy ratios of the IMFs of a clinical EEG signal to its refereed total energy are used for the starting points of chaotic logistic map types of encrypted chaotic signals in the x and y vectors, respectively. The minimum and second minimum energy ratios of the IMFs of a clinical EEG signal to its refereed total energy are used for the security level parameters of chaotic logistic map types of encrypted chaotic signals in the x and y vectors, respectively. Three EEG database, and seventeen clinical EEG signals were tested, and the average r and mse values are 0.0201 and 4.2626 × 10− 29, respectively, for the original and chaotically-encrypted through EMD clinical EEG signals. The chaotically-encrypted signal cannot be recovered if there is an error in the input parameters, for example, an initial point error of 0.000001 %. The encryption effects of the proposed chaotic EMD visual encryption mechanism are excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Noar, M., and Shamir, A., Visual cryptography. Lecture Notes in Computer Science. Springer Publishers, pp 1–12, 1998.

  2. Kocarev, L., Chaos-based cryptography: A brief overview. IEEE Circ. Syst. Mag. 1(3):6–21, 2001.

    Article  Google Scholar 

  3. Yang, M., Bourbakis, N., and Li, S., Data, image, video encryption. IEEE Potentials 9:28–34, 2004.

    Article  Google Scholar 

  4. Ou, C. M., Design of block ciphers by simple chaotic functions. IEEE Comput. Intell. Mag. 5:54–59, 2009.

    Google Scholar 

  5. Dachselt, F., and Schwarz, W., Chaos and cryptography. IEEE Trans. Circ. Syst. I 48(12):1498–1509, 2001.

    Article  Google Scholar 

  6. Naoki, M., Goce, J., Kazuyuki, A., et al., Chaotic block ciphers: From theory to practical algorithms. IEEE Trans. Circ. Syst. I 53(6):1341–1352, 2006.

    Article  Google Scholar 

  7. Jiang, Q., Ma, J., Ma, Z., and Li, G., A privacy enhanced authentication scheme for telecare medical information systems. J. Med. Syst. 37(1):1–8, 2013.

    Article  Google Scholar 

  8. Mishra, D., Srinivas, J., and Mukhopadhyay, S., A secure and efficient chaotic map-based authenticated key agreement scheme for telecare medicine information systems. J. Med. Syst. 38:120, 2014.

    Article  PubMed  Google Scholar 

  9. Lou, D. C., Lee, T. F., and Lin, T. H., Efficient biometric authenticated key agreements based on extended chaotic maps for telecare medicine information systems. J. Med. Syst. 39:58, 2015.

    Article  PubMed  Google Scholar 

  10. Lu, Y., Li, L., Peng, H., et al., Robust and efficient biometrics based password authentication scheme for telecare medicine information systems using extended chaotic maps. J. Med. Syst. 39:65, 2015.

    Article  PubMed  Google Scholar 

  11. Shehzad, A. C., Khalid, M., Husnain, N., et al., An improved and secure biometric authentication scheme for telecare medicine information systems based on elliptic curve cryptography. J. Med. Syst. 39:175, 2015.

    Article  Google Scholar 

  12. Wang, Z., Huo, Z., and Shi, W., A dynamic identity based authentication scheme using chaotic maps for telecare medicine information systems. J. Med. Syst. 39:158, 2015.

    Article  PubMed  Google Scholar 

  13. Chen, C. K., Lin, C. L., Chiang, C. T., et al., Personalized information encryption using ECG signals with chaotic functions. Inf. Sci. 193:125–140, 2012.

    Article  Google Scholar 

  14. Sufi, F., Han, F., Khalil, I., et al., A chaos-based encryption technique to protect ECG packets for time critical telecardiology applications. Secur. Commun. Netw. 4(5):515–524, 2011.

    Article  Google Scholar 

  15. Lin, C. F., Chang, W. T., and Li, C. Y., A chaos-based visual encryption mechanism in JPEG2000 medical images. J. Med. Biol. Eng. 27(3):144–149, 2007.

    Google Scholar 

  16. Lin, C. F., Chung, C. H., Chen, Z. L., et al., A chaos-based unequal encryption mechanism in wireless telemedicine with error decryption. WSEAS Trans. Syst. 7(2):49–55, 2008.

    Google Scholar 

  17. Lin, C. F., Chung, C. H., and Lin, J. H., A chaos-based visual encryption mechanism for clinical EEG signals. Med. Biol. Eng. Comput. 47(7):757–762, 2009.

    Article  PubMed  Google Scholar 

  18. Lin, C. F., Chaos-based 2D visual encryption mechanism for ECG medical signals. In: Thomas, S. C. (Ed.), Horizons in Computer Science Research, Volume 4. Nova, USA, pp. 205–217, 2012.

    Google Scholar 

  19. Lin, C. F., and Wang, B. S. H., A 2D chaos-based visual encryption scheme for clinical EEG signals. J. Mar. Sci. Technol. 19(6):666–672, 2011.

    Google Scholar 

  20. Lin, C. F., Shih, S. H., and Zhu, J. D., Chaos based encryption system for encrypting electroencephalogram signals. J. Med. Syst. 38:49, 2014.

    Article  PubMed  Google Scholar 

  21. Huang, N. E., Shen, Z., Long, S. R., et al., The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. Royal Soc. Lond. Series A—Math. Phys. Eng. Sci. 454:903–995, 1998.

    Article  Google Scholar 

  22. Huang, N. E., and Hen, S. S. P., Hilbert-Huang Transform and its Applications. World Scientific Publishing Co., Singapore, pp. 1–307, 2005.

    Book  Google Scholar 

  23. Yan, R., and Gao, R. T., A tour of the Hilbert-Huang transform: an empirical tool for signal analysis. IEEE Instrum. Meas. Mag. 10:11–15, 2007.

    Article  Google Scholar 

  24. Wu, M. C., and Huang, N. E., The bimedical data processing using HHT: A review. In: Nait-Ali, A. (Ed.), Advanced Biosignal Processing. Springer Publishers, Berlin Heidelberg, pp. 335–350, 2009.

    Chapter  Google Scholar 

  25. Rui, F. P., A new tool for Nonstationary and NonlinearSignals: The Hilbert−Huang transform in biomedical applications. In: Anthony, N. (Ed.), Biomedical Engineering Trends in Electronics. Communications and Software. Intech Science Publishers, Austria, pp. 481–504, 2011.

    Google Scholar 

  26. Milan, S., Hilbert-Huang transform and its applications in engineering and biomedical signal analysis. WSEAS International Symposium on Recent Researches in Circuits and Systems. pp 188–195, 2012.

  27. Lin, C. F., and Zhu, J. D., Hilbert-Huang transformation based time-frequency analysis methods in biomedical signal applications. Proc. Inst. Mech. Eng. H J Eng. Med. 226:208–216, 2012.

    Article  Google Scholar 

  28. Lin, C. F., Yeh, S. W., Chien, Y. Y., et al., A HHT-based time frequency analysis scheme in clinical alcoholic EEG signals. WSEAS Trans. Biol. Biomed. 5(10):249–260, 2008.

    CAS  Google Scholar 

  29. Lin, C. F., Yeh, S. W., Chang, S. H., et al., An HHT-based Time-frequency Scheme for Analyzing the EEG Signals of Clinical Alcoholics. Nova, USA, pp. 1–26, 2010.

    Google Scholar 

  30. Lin, C. F., Yang, B. H., Peng, T. I., et al., Sharp wave based HHT Time-frequency features with transmission error. In: Georgi, G., and Theo, A. R. (Eds.), Advance in Telemedicine: Technologies, Enabling Factors and Scenarios. Intech Science Publishers, Austria, pp. 149–164, 2011.

    Google Scholar 

  31. Lin, C. F., Su, J. Y., and Wang, H. M., Hilbert-Huang transformation based analyses of FP1, FP2, and Fz electroencephalogram signals in alcoholism. J. Med. Syst. 39:83, 2015.

    Article  PubMed  Google Scholar 

  32. Zhu, J. D., Lin, C. F., Chang, S. H., et al., Analysis of spike waves in epilepsy using Hilbert-Huang transform. J. Med. Syst. 39:170, 2015.

    Article  PubMed  Google Scholar 

  33. Schalk, G., McFarland, D. J., Hinterberger, T., et al., BCI2000: A general-purpose Brain-Computer Interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6):1034–1043, 2004.

    Article  PubMed  Google Scholar 

  34. Goldberger, A. L., Amaral, L., Glass, L., et al., Components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Shoeb, A. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. PhD Thesis, Massachusetts Institute of Technology, 2009.

  36. Goldberger, A. L., LAN, A., Glass, L., et al., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledge the support of the ntou center for teaching and learning, maritime telemedicine teaching and learning probject, and the valuable comments of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Feng Lin.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CF. Chaotic Visual Cryptosystem Using Empirical Mode Decomposition Algorithm for Clinical EEG Signals. J Med Syst 40, 52 (2016). https://doi.org/10.1007/s10916-015-0414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0414-0

Keywords

Navigation