Skip to main content

Advertisement

Log in

Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are shockable ventricular cardiac ailments. Detection of VT/VF is one of the important step in both automated external defibrillator (AED) and implantable cardioverter defibrillator (ICD) therapy. In this paper, we propose a new method for detection and classification of shockable ventricular arrhythmia (VT/VF) and non-shockable ventricular arrhythmia (normal sinus rhythm, ventricular bigeminy, ventricular ectopic beats, and ventricular escape rhythm) episodes from Electrocardiogram (ECG) signal. The variational mode decomposition (VMD) is used to decompose the ECG signal into number of modes or sub-signals. The energy, the renyi entropy and the permutation entropy of first three modes are evaluated and these values are used as diagnostic features. The mutual information based feature scoring is employed to select optimal set of diagnostic features. The performance of the diagnostic features is evaluated using random forest (RF) classifier. Experimental results reveal that, the feature subset derived from mutual information based scoring and the RF classifier produces accuracy, sensitivity and specificity values of 97.23 %, 96.54 %, and 97.97 %, respectively. The proposed method is compared with some of the existing techniques for detection of shockable ventricular arrhythmia episodes from ECG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://physionet.org/physiobank/database/cudb/

  2. https://www.physionet.org/physiobank/database/mitdb/

  3. https://physionet.org/physiobank/database/vfdb/

References

  1. Zipes, D.P., Camm, A.J., Borggrefe, M., Buxton, A.E., Chaitman, B., Fromer, M., Gregoratos, G., Klein, G., Moss, A.J., Myerburg, R.J., et al., Acc/aha/esc 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the american college of cardiology/american heart association task force and the european society of cardiology committee for practice guidelines. J. Am. Coll. Cardiol. 48(5):e247–e346, 2006.

    Article  PubMed  Google Scholar 

  2. Goldberger, A.L., Clinical electrocardiography: a simplified approach: Elsevier Health Sciences, 2012.

  3. Dandapat, S., Sharma, L.N., Tripathy, R.K.: Quantification of diagnostic information from electrocardiogram signal: A review. In: Advances in Communication and Computing, vol. 347, p. 319. Springer, India (2015)

  4. Josephson, M., and Wellens, H.J.J., Implantable defibrillators and sudden cardiac death. Circulation 109 (22):2685–2691, 2004.

    Article  PubMed  Google Scholar 

  5. Amann, A., Tratnig, R., Unterkofler, K., Detecting ventricular fibrillation by time-delay methods. IEEE Trans. Biomed. Eng. 54(1):174–177, 2007.

    Article  PubMed  Google Scholar 

  6. Irena J., Comparison of five algorithms for the detection of ventricular fibrillation from the surface ecg. Physiol. Meas. 21(4):429, 2000.

    Article  Google Scholar 

  7. Millet-Roig, J., Rieta-Ibanez, J.J., Vilanova, E., Mocholi, A., Chorro, F.J.: Time-frequency analysis of a single ecg: to discriminate between ventricular tachycardia and ventricular fibrillation. In: Computers in Cardiology, 1999, pp. 711–714. IEEE (1999)

  8. Addison, P.S., Watson, J.N., Clegg, G.R., Holzer, M., Sterz, F., Robertson, C.E., Evaluating arrhythmias in ecg signals using wavelet transforms. IEEE Engineering in Medicine and Biology Magazine 19(5): 104–109, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Balasundaram, K., Masse, S., Nair, K., Umapathy, K., A classification scheme for ventricular arrhythmias using wavelets analysis. Med. Biol. Eng. Comput. 51(1–2):153–164, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Rasooli, M., Foomany, F.H., Balasundaram, K., Masse, S., Zamiri, N., Ramadeen, A., Hu, X., Dorian, P., Nanthakumar, K., Krishnan, S., et al., Analysis of electrocardiogram pre-shock waveforms during ventricular fibrillation. Biomedical Signal Processing and Control 21:26–33, 2015.

    Article  Google Scholar 

  11. Arafat, M.A., Sieed, J., Hasan, MK., Detection of ventricular fibrillation using empirical mode decomposition and bayes decision theory. Comput. Biol. Med. 39(11):1051–1057, 2009.

    Article  Google Scholar 

  12. Neurauter, A., Eftestøl, T., Kramer-Johansen, J, Abella, B.S., Sunde, K., Wenzel, V., Lindner, K.H., Eilevstjønn, J., Myklebust, H., Steen, P.A., et al., Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks. Resuscitation 73(2):253–263, 2007.

    Article  PubMed  Google Scholar 

  13. Li, Q., Rajagopalan, C., Clifford, G.D., Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61(6):1607–1613, 2014.

    Article  PubMed  Google Scholar 

  14. Alonso-Atienza, F., Rojo-Álvarez, J.L., Rosado-Muñoz, A., Vinagre, J.J., García-Alberola, A., Camps-Valls, G., Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection. Expert Syst. Appl. 39(2):1956–1967, 2012.

    Article  Google Scholar 

  15. Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A., Rojo-Alvarez, J.L., Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61(3):832–840, 2014.

    Article  PubMed  Google Scholar 

  16. Alwan, Y., Cvetkovic, Z., Curtis, M.: Structured prediction for differentiating between normal rhythms, ventricular tachycardia, and ventricular fibrillation in the ecg. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 310–314 (2015)

  17. Sumathi, S., Lilly Beaulah, H., Vanithamani, R., A wavelet transform based feature extraction and classification of cardiac disorder. J. Med. Syst. 38(9):1–11, 2014.

    Article  Google Scholar 

  18. Flandrin, P., Rilling, G., Goncalves, P., Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters 11(2):112–114, 2004.

    Article  Google Scholar 

  19. Jain, P., and Pachori, R.B., An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the hankel matrix: Journal of the Franklin Institute, 2015.

  20. Dragomiretskiy, K., and Zosso, D., Variational mode decomposition. IEEE Transactions on Signal Processing 62(3):531–544, 2014.

    Article  Google Scholar 

  21. Maji, U., Pal, S., Majumder, S., Estimation of arrhythmia episode using variational mode decomposition technique. In. IEEE International Instrumentation and Measurement Technology Conference (I2MTC) 2015:767–772, 2015.

    Google Scholar 

  22. Goldberger, A.L, Amaral, L.A.N., Glass, L., Hausdorff, J.M, Ivanov, P.C., Mark, R.G, Mietus, J.E, Moody, G.B, Peng, C.-K., Stanley, H.E., Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101(23):e215—e220, 2000.

    Article  PubMed  Google Scholar 

  23. Moody, G.B, and Mark, R.G, The impact of the mit-bih arrhythmia database. IEEE Engineering in Medicine and Biology Magazine 20(3):45–50, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Rangayyan, R.M., Biomedical signal analysis: IEEE Standards Office, 2001.

  25. Sharma, L.N., Dandapat, S., Mahanta, A., Ecg signal denoising using higher order statistics in wavelet subbands. Biomedical Signal Processing and Control 5(3):214–222, 2010.

    Article  Google Scholar 

  26. Sharma, L.N., Dandapat, S., Mahanta, A., Multichannel ecg data compression based on multiscale principal component analysis. IEEE Trans Inf Technol Biomed 16(4):730–736, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Sharma, L.N., Tripathy, R.K., Dandapat, S., Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. PP(99):1–1, 2015.

    Google Scholar 

  28. Sharma, R., Pachori, R.B., Rajendra Acharya, U., Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17(2):669–691, 2015.

    Article  Google Scholar 

  29. Mookiah, M.R.K., Rajendra Acharya, U., Koh, J.E.W., Chua, C.K., Tan, J.H., Chandran, V., Lim, C.M., Noronha, K., Laude, A., Tong, L., Decision support system for age-related macular degeneration using discrete wavelet transform. Med. Biol. Eng. Comput. 52(9):781–796, 2014.

    Article  PubMed  Google Scholar 

  30. Bandt, C., and Pompe, B., Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17):174102, 2002.

    Article  PubMed  Google Scholar 

  31. Li, X., Ouyang, G., Richards, D.A, Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77(1):70–74, 2007.

    Article  PubMed  Google Scholar 

  32. Alshraideh, H., Otoom, M., Al-Araida, A., Bawaneh, H., Bravo, J., A web based cardiovascular disease detection system. J. Med. Syst. 39(10):2015.

  33. Jayachandran, E.S., et al., Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34(6):985–992, 2010.

    Article  CAS  PubMed  Google Scholar 

  34. Pohjalainen, J., Räsänen, O., Kadioglu, S., Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang., 2013.

  35. Camara, C., Warwick, K., BruAta, R., Aziz, T., del Pozo, F., MaestA, F., A fuzzy inference system for closed-loop deep brain stimulation in parkinson disease. J. Med. Syst. 39(11), 2015.

  36. Aydın, S., Tunga, M.A., Yetkin, S., Mutual information analysis of sleep eeg in detecting psycho-physiological insomnia. J. Med. Syst. 39(5):1–10, 2015.

    Google Scholar 

  37. Bishop, C.M., et al., Pattern recognition and machine learning, vol. 1. New York: springer, 2006.

    Google Scholar 

  38. Duda, R.O., Hart, P.E., Stork, D.G., Pattern classification: Wiley, 2012.

  39. Breiman, L., Random forests. Mach. Learn. 45(1):5–32, 2001.

    Article  Google Scholar 

  40. Baakek, Y.N., Hadj Slimane, Z.E., Bereksi Reguig, F., The quantification of the qt-rr interaction in ecg signal using the detrended fluctuationanalysis and ararx modelling. J. Med. Syst. 38(8):1–11, 2014.

    Article  Google Scholar 

  41. Amann, A., Tratnig, R., Unterkofler, K., et al., Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. BioMedical Engineering OnLine 4(60):1–15, 2005.

    Google Scholar 

  42. Fokkenrood, S., Leijdekkers, P., Gay, V.: Ventricular tachycardia/fibrillation detection algorithm for 24/7 personal wireless heart monitoring. In: Pervasive Computing for Quality of Life Enhancement, pp. 110–120. Springer (2007)

  43. Jekova, I., Shock advisory tool: Detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set. Biomedical Signal Processing and Control 2(1):25–33, 2007.

    Article  Google Scholar 

  44. Jekova, I., and Krasteva, V., Real time detection of ventricular fibrillation and tachycardia. Physiol. Meas. 25(5):1167, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to editor-in-chief and associate editor of journal of medical systems for encouragement and would like to thank reviewers for their suggestions to enhance the technical content of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Tripathy.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, R.K., Sharma, L.N. & Dandapat, S. Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition. J Med Syst 40, 79 (2016). https://doi.org/10.1007/s10916-016-0441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0441-5

Keywords

Navigation