Skip to main content

Advertisement

Log in

Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suri, J. S., Dowling, A., Laxminarayan, S., and Singh, S., Economic impact of telemedicine: A survey. Stud. Health. Technol. Inform. 114:140–56, 2005.

    PubMed  Google Scholar 

  2. Kim, K. W., and Lee, J. D., On the security of two remote user authentication schemes for telecare medical information systems. J. Med. Syst. 38(5):17, 2014.

    Article  PubMed  Google Scholar 

  3. Lu, C., Wu, Z., Liu, M., Chen, W., and Guo, J., A patient privacy protection scheme for medical information system. J. Med. Syst. 37(6):9982, 2013.

    Article  PubMed  Google Scholar 

  4. Dogan, S., Tuncer, T., Avci, E., and Gulten, A., A new watermarking system based on discrete cosine transform (DCT) in color biometric images. J. Med. Syst. 36(4):2379–2385, 2012.

    Article  PubMed  Google Scholar 

  5. Soliman, M. M., Hassanien, A. E., Ghali, N. I., and Onsi, H. M., An adaptive watermarking approach for medical imaging using swarm intelligent. Int. J. Smart Home 6(1):37–50, 2012.

    Google Scholar 

  6. Farooq, O., Vyas, A. L., Datta, S., Mulvaney, D., Watermarking biomedical signal for authentication using integer wavelet transform. 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). 2:892–896, 2011.

  7. Hsu, W.-S., and Pan, J.-I., The secure authorization model for healthcare information system. J. Med. Syst. 37(5):9974, 2013.

    Article  PubMed  Google Scholar 

  8. Yassin, N. I., Salem, N. M., and El Adawy, M. I., Medical video watermarking scheme for electronic patient records. Int. J. Comput. Appl. 76(1):12–17, 2013.

    Google Scholar 

  9. Acharjee, S., Chakraborty, S., Ray, R., Nath, S., Dey, N., Watermarking in motion vector for security enhancement of medical videos. 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014; 532–537.

  10. Scholar, P. G., A survey: Digital image watermarking techniques. Int. J. Signal Process. Image Process. Pattern Recognit. 7(6):111–124, 2014.

    Article  Google Scholar 

  11. Mohan, B. C., Swamy, K. V., Kumar, S. S., A Comparative performance evaluation of SVD and Schur Decompositions for Image Watermarking. In: IJCA Proceedings on International Conference on VLSI, Communications and Instrumentation (ICVCI). 14:25–29, 2011.

  12. Nicolaides, A., Beach, K. W., Kyriacou, E., Pattichis, C. S, (Eds.). Ultrasound and carotid bifurcation atherosclerosis. Springer Science & Business Media, 2011.

  13. Molinari, F., Zeng, G., Suri, J. S., Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images. In: Atherosclerosis Disease Management. New York: Springer, 2011; 253–279.

  14. Tang, H., van Walsum, T., Hameeteman, R., Shahzad, R., van Vliet, L. J., and Niessen, W. J., Lumen segmentation and stenosis quantification of atherosclerotic carotid arteries in CTA utilizing a centerline intensity prior. Med. Phys. 40(5):051721, 2013.

    Article  PubMed  Google Scholar 

  15. Chen, S. T., Hung, P. K., Lin, M. S., Huang, C. Y., Chen, C. M., Wang, T. D., and Lee, W. J., DWT-based segmentation method for coronary arteries. J. Med. Syst. 38(6):1–8, 2014.

    CAS  Google Scholar 

  16. Sabih, D., and Hussain, M., Automated classification of liver disorders using ultrasound images. J. Med. Syst. 36(5):3163–3172, 2012.

    Article  PubMed  Google Scholar 

  17. Peker, M., Şen, B., and Gürüler, H., Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks. J. Med. Syst. 39(2):1–11, 2015.

    Article  Google Scholar 

  18. Acharya, U. R., Anand, D., Bhat, P. S., and Niranjan, U. C., Compact storage of medical images with patient information. IEEE Trans. Inf. Technol. Biomed. 5(4):320–323, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Kong, X., and Feng, R., Watermarking medical signals for telemedicine. IEEE Trans. Inf. Technol. Biomed. 5(3):195–201, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Engin, M., Cidam, O., and Engin, E. Z., Wavelet transformation based watermarking technique for human electrocardiogram (ECG). J. Med. Syst. 29(6):589–94, 2005.

    Article  PubMed  Google Scholar 

  21. Pan, W., Coatrieux, G., Montagner, J., Cuppens, N., Cuppens, F., Roux, C. h., Comparison of some reversible watermarking methods in application to medical images. 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA 2009; 2172–2175.

  22. Das, S., and Kundu, M. K., Effective management of medical information through a novel blind watermarking technique. J. Med. Syst. 36(5):3339–3351, 2012.

    Article  PubMed  Google Scholar 

  23. Bouslimi, D., Coatrieux, G., Cozic, M., and Roux, C., A joint encryption/watermarking system for verifying the reliability of medical images. IEEE Trans. Inf. Technol. Biomed. 16(5):891–899, 2012.

    Article  PubMed  Google Scholar 

  24. Li, X. W., and Kim, S. T., Optical 3D watermark based digital image watermarking for telemedicine. Opt. Lasers Eng. 51(12):1310–1320, 2013.

    Article  Google Scholar 

  25. Ibaida, A., and Khalil, I., Wavelet-Based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans. Biomed. Eng. 60(12):3322–3330, 2013.

    Article  PubMed  Google Scholar 

  26. Prabakaran, G., Bhavani, R., Ramesh, M., A Robust QR-Code video watermarking scheme based on SVD and DWT composite domain. Proceedings of the 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME) 2013:251–257.

  27. Al-Haj, A., Amer, A., Secured telemedicine using region-based watermarking with tamper localization. J. Digit. Imaging. 2014.

  28. Lin, S., and Chin, C., A robust DCT-based watermarking for copyright protection. IEEE Trans. Consum. Electron. 46(3):415–421, 2000.

    Article  Google Scholar 

  29. Nikolaidis, A., and Pitas, I., Asymptotically optimal detection for additive watermarking in the DCT and DWT domains. IEEE Trans. Image Process. 2(10):563–571, 2003.

    Article  Google Scholar 

  30. Chu, W., DCT-based image watermarking using sub sampling. IEEE Trans. Multimed. 5(1):34–38, 2003.

    Article  Google Scholar 

  31. Chang, C.-C., Tsai, P., and Lin, C.-C., SVD-based digital image watermarking scheme. Pattern Recogn. Lett. 26(10):1577–1586, 2005.

    Article  Google Scholar 

  32. Chung, K.-L., Yang, W.-N., Huang, Y.-H., Wu, S.-T., and Hsu, Y.-C., On SVD-based watermarking algorithm. Appl. Math. Comput. 188(1):54–57, 2007.

    Google Scholar 

  33. Lai, C. C., A digital watermarking scheme based on singular value decomposition and tiny genetic algorithm. Digit. Signal Process. 21(4):522–527, 2011.

    Article  Google Scholar 

  34. Zhen, L., Kim-Hui, Y., Bai-Ying, L., A new blind robust image watermarking scheme in SVD-DCT composite domain. 18th IEEE International Conference on Image Processing (ICIP), 2011; 2757–2760.

  35. Dey, N., Samanta, S., Yang, X.-S., Das, A., and Chaudhuri, S. S., Optimization of scaling factors in electrocardiogram signal watermarking using cuckoo search. Int. J. Bio-Inspired Comput. 5(5):315–326, 2013.

    Article  Google Scholar 

  36. Dey, N., Samanta, S., Chakraborty, S., Das, A., Chaudhuri, S. S., and Suri, J. S., Firefly algorithm for optimization of scaling factors during embedding of manifold medical information: An application in ophthalmology imaging. J. Med. Imaging Health Inform. 4(3):384–394, 2014.

    Article  Google Scholar 

  37. Yeager, V. A., Walker, D., Cole, E., Mora, A. M., and Diana, M. L., Factors related to health information exchange participation and use. J. Med. Syst. 38(8):78, 2014.

    Article  PubMed  Google Scholar 

  38. Abdel-Dayem, A. R., El-Sakka, M. R., Diffusion-based detection of carotid artery lumen from ultrasound images. In: Image Analysis and Recognition. Berlin Heidelberg: Springer, 2009; 782–791.

  39. Santos, A. M., Tavares, J. M. R., Sousa, L., Santos, R., Castro, P., Azevedo, E., Detection of the carotid artery lumen and bifurcation contours in ultrasound B-mode images. In: Congresso de Métodos Numéricos em Engenharia-CMNE, 2013.

  40. Rouco, J., Campilho, A., Robust common carotid artery lumen detection in B-mode ultrasound images using local phase symmetry. 2013 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013; 929–933.

  41. Rocha, R., Silva, J., and Campilho, A., Automatic detection of the carotid lumen axis in B-mode ultrasound images. Comput. Methods Prog. Biomed. 115(3):110–118, 2014.

    Article  Google Scholar 

  42. Suri, J. S., Kathuria, C., Molinari F. Atherosclerosis disease management. Springer Science & Business Media, 2010.

  43. Sanches, J. M., Laine, A. F., Suri, J. S., Ultrasound Imaging. Springer, 2012.

  44. Saba, L., Sanches, J. M., Pedro, L. M., and Suri, J. S., Multi-modality atherosclerosis imaging and diagnosis. Springer, New York, 2014.

    Book  Google Scholar 

  45. Molinari, F., Zeng, G., and Suri, J. S., An integrated approach to computer-based automated tracing and its validation for 200 common carotid arterial wall ultrasound images a new technique. J. Ultrasound Med. 29(3):399–418, 2010.

    PubMed  Google Scholar 

  46. Molinari, F., Krishnamurthi, G., Acharya, U. R., Sree, S. V., Zeng, G., Saba, L., et al., Hypothesis validation of far-wall brightness in carotid-artery ultrasound for feature-based IMT measurement using a combination of level-set segmentation and registration. IEEE Trans. Instrum. Meas. 61(4):1054–1063, 2012.

    Article  Google Scholar 

  47. Ikeda, N., Gupta, A., Dey, N., Bose, S., Araki, T., Elisa, C. G., et al., Improve the correlation between the carotid and coronary artherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement. Ultrasound Med. Biol. 41(5):1247–62, 2015.

    Article  PubMed  Google Scholar 

  48. Acharya, U. R., Sree, S. V., Krishnan, M. M., Molinari, F., Saba, L., Ho, S. Y., Ahuja, A. T., Ho, S. C., Nicolaides, A., and Suri, J. S., Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. Ultrasound Med. Biol. 38(6):899–915, 2012.

    Article  PubMed  Google Scholar 

  49. Acharya, U. R., Sree, S. V., Mookiah, M. R., Saba, L., Gao, H., Mallarini, G., and Suri, J. S., Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: A pilot study. Proc. Inst. Mech. Eng. H. 227(6):643–54, 2013.

    Article  CAS  PubMed  Google Scholar 

  50. Sharma, A. M., Gupta, A., Kumar, P. K., Rajan, J., Saba, L., Nobutaka, I., Laird, J. R., Nicolades, A., Suri, J. S., A review on carotid ultrasound atherosclerotic tissue characterization and stroke risk stratification in machine learning framework. Curr. Atheroscler. Rep. 17(9), 2015.

  51. Acharya, U. R., Sree, S. V., Krishnan, M. M., Molinari, F., Garberoglio, R., and Suri, J. S., Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems. Ultrasonics 52(4):508–520, 2012.

    Article  PubMed  Google Scholar 

  52. Acharya, U. R., Swapna, G., Sree, S. V., Molinari, F., Gupta, S., Bardales, R. H., Witkowska, A., and Suri, J. S., A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol. Cancer Res. Treatugust 13:289–301, 2014.

    CAS  Google Scholar 

  53. Pareek, G., Acharya, U. R., Sree, S. V., Swapna, G., Yantri, R., Martis, R. J., Saba, L., Krishnamurthi, G., Mallarini, G., El-Baz, A., Al Ekish, S., Beland, M., and Suri, J. S., Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images. Technol. Cancer Res. Treat. 12(6):545–57, 2013.

    PubMed  Google Scholar 

  54. Acharya, U. R., Molinari, F., Sree, S. V., Swapna, G., Saba, L., Guerriero, S., and Suri, J. S., Ovarian tissue characterization in ultrasound: a review. Technol. Cancer Res. Treat. 14(3):251–61, 2015.

    Article  PubMed  Google Scholar 

  55. Shrivastava, V. K., Londhe, N. D., Sonawane, R. S., and Suri, J. S., First review on psoriasis severity risk stratification: An engineering perspective. Comput. Biol. Med. 63:52–63, 2015.

    Article  PubMed  Google Scholar 

  56. Park, B.-Y., Kim, H.-H., and Hong, B.-W., A multilabel texture segmentation based on local entropy signature. Math. Probl. Eng. 2013:1–6, 2013.

    Google Scholar 

  57. Sezgin, M., and Sankur, B., Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1):146–165, 2004.

    Article  Google Scholar 

  58. Roy, P., Chakraborty, S., Dey, N., Dey, G., Ray, R., Dutta, S., Adaptive thresholding: A comparative study. International Conference on Control, Instrumentation, Communication and Computational Technologies, 2014.

  59. Ikeda, N., Araki, T., Dey, N., Bose, S., Shafique, S., El-Baz, A., and Suri, J. S., Automated and accurate carotid bulb detection, its verification and validation in low quality frozen frames and motion video. International angiology. Int. Union Angiol. 33(6):573–589, 2014.

    CAS  Google Scholar 

  60. Ng, H. P., Ong, S. H., Foong, K. W. C., Goh, P. S., Nowinski, W. L., Medical image segmentation using K-means clustering and improved watershed algorithm. IEEE Southst Symposium on Image Analysis and Interpretation, 2006: 61–65.

  61. Ma, Z., and Tavares, J. M. R., A review of the quantification and classification of pigmented skin lesions: From dedicated to hand-held devices. J. Med. Syst. 39(11):1–12, 2015.

    Google Scholar 

  62. Waheed, A., Akram, M. U., Khalid, S., Waheed, Z., Khan, M. A., and Shaukat, A., Hybrid features and methods classification based robust segmentation of blood vessels. J. Med. Syst. 39(10):1–14, 2015.

    Article  Google Scholar 

  63. Lai, I. J. Z. C., Huang, T. J., and Liaw, Y. C., A fast k-means clustering algorithm using cluster center displacement. Pattern Recogn. 42:2551–2556, 2009.

    Article  Google Scholar 

  64. Patil, A. J., Patil, C. S., Karhe, R. R., and Aher, M. A., Comparative study of different clustering algorithms. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 3(7):10490–10497, 2014.

    Google Scholar 

  65. Li, J., Robust image watermarking scheme against geometric attacks using a computer-generated hologram. Appl. Opt. 49(32):6302–12, 2010.

    Article  PubMed  Google Scholar 

  66. Khalil, M. S., Kurniawan, F., Khan, M. K., and Alginahi, Y. M., Two-layer fragile watermarking method secured with chaotic map for authentication of Digital Holy Quran. Sci. World J. 2014:803983, 2014.

    Google Scholar 

  67. Sudha, S., Suresh, G. R., and Sukanesh, R., Speckle noise reduction in ultrasound images using context-based adaptive wavelet thresholding. IETE J. Res. 55(3):135–143, 2009.

    Article  Google Scholar 

  68. Varma, T., Chitre, V., Patil, D., The Haar Wavelet and The Biorthogonal Wavelet Transforms of an Image. International Journal of Engineering Research and Applications, 2012; 288–291.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasjit S. Suri.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, N., Bose, S., Das, A. et al. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine. J Med Syst 40, 91 (2016). https://doi.org/10.1007/s10916-016-0451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0451-3

Keywords

Navigation