Skip to main content

Advertisement

Log in

An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel framework of computer-aided diagnosis (CAD) system has been presented for the classification of benign/malignant breast tissues. The properties of the generalized pseudo-Zernike moments (GPZM) and pseudo-Zernike moments (PZM) are utilized as suitable texture descriptors of the suspicious region in the mammogram. An improved classifier- adaptive differential evolution wavelet neural network (Ada-DEWNN) is proposed to improve the classification accuracy of the CAD system. The efficiency of the proposed system is tested on mammograms from the Mammographic Image Analysis Society (mini-MIAS) database using the leave-one-out cross validation as well as on mammograms from the Digital Database for Screening Mammography (DDSM) database using 10-fold cross validation. The proposed method on MIAS-database attains a fair accuracy of 0.8938 and AUC of 0.935 (95 % CI = 0.8213–0.9831). The proposed method is also tested for in-plane rotation and found to be highly rotation invariant. In addition, the proposed classifier is tested and compared with some well-known existing methods using receiver operating characteristic (ROC) analysis using DDSM- database. It is concluded the proposed classifier has better area under the curve (AUC) (0.9289) and highly précised with 95 % CI, 0.8216 to 0.9834 and 0.0384 standard error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee, H., and Chen, Y. P. P., Image based computer aided diagnosis system for cancer detection. Expert Syst. Appl. 42(12):5356–5365, 2015.

    Article  Google Scholar 

  2. Rouhi, R., Jafari, M., Kasaei, S., and Keshavarzian, P., Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst. Appl. 42(3):990–1002, 2015.

    Article  Google Scholar 

  3. Sharaf-El-Deen, D. A., Moawad, I. F., and Khalifa, M. E., A new hybrid case-based reasoning approach for medical diagnosis systems. J. Med. Syst. 38(2):1–11, 2014.

    Article  Google Scholar 

  4. Srivastava, S., Sharma, N., Singh, S. K., and Srivastava, R., Quantitative analysis of a general framework of a CAD tool for breast cancer detection from mammograms. J. Med. Imaging Health Inform 4(5):654–674, 2014.

    Article  Google Scholar 

  5. Chan, H. P., Doi, K., Vyborny, C. J., Schmidt, R. A., Metz, C. E., Lam, K. L., Ogura, T., Wu, Y., and MacMahon, H., Improvement in radiologists’ detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis. Investig. Radiol. 25:1102–1110, 1990.

    Article  CAS  Google Scholar 

  6. Samala, R. K., Chan, H. P., Lu, Y., Hadjiiski, L., Wei, J., Sahiner, B., and Helvie, M. A., Computer-aided detection of clustered microcalcifications in multiscale bilateral filtering regularized reconstructed digital breast tomosynthesis volume. Med. Phys. 41(2):021901, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moon, W. K., Lo, C. M., Goo, J. M., Bae, M. S., Chang, J. M., Huang, C. S., and Chang, R. F., Quantitative analysis for breast density estimation in low dose chest CT scans. J. Med. Syst. 38(3):1–9, 2014.

    Article  Google Scholar 

  8. Sampat, M. P., Bovik, A. C., Whitman, G. J., and Markey, M. K., A model-based framework for the detection of spiculated masses on mammographya. Med. Phys. 35(5):2110–2123, 2008.

    Article  PubMed  Google Scholar 

  9. Ramos-Pollán, R., Guevara-López, M. A., Suárez-Ortega, C., Díaz-Herrero, G., Franco-Valiente, J. M., Rubio-del-Solar, M., González-de-Posada, N., Vaz, M. A. P., Loureiro, J., and Ramos, I., Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J. Med. Syst. 36(4):2259–2269, 2012.

  10. Elter, M., and Horsch, A., CADx of mammographic masses and clustered microcalcifications: a review. Med. Phys. 36(6):2052–2068, 2009.

    Article  PubMed  Google Scholar 

  11. Dutt, V., and Greenleaf, J. F., Adaptive speckle reduction filter for log-compressed B-scan images. IEEE Trans. Med. Imaging 15(6):802–813, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Compas, C. B., Wong, E. Y., Huang, X., Sampath, S., Lin, B., Pal, P., Papademetris, X., Thiele, K., Dione, D. P., Stacy, M., Staib, L. H., Sinusas, A. J., O’Donnell, M., and Duncan, J. S., Correction to “Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography” [Jun 14 1275–1289]. IEEE Trans. Med. Imaging 34(2):690–690, 2015.

  13. Achim, A., Bezerianos, A., and Tsakalides, P., Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8):772–783, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Jose, S., and Chandy, D. A., Content based mammogram retrieval using biorthogonal wavelet filters in DDSM database. In: 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE). pp. 1–6. IEEE, 2014.

  15. Tsantis, S., Spiliopoulos, S., Skouroliakou, A., Karnabatidis, D., Hazle, J. D., and Kagadis, G. C., Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction. Med. Phys. 41(7):072903, 2014.

    Article  PubMed  Google Scholar 

  16. Stetson, P. F., Sommer, F. G., and Macovski, A., Lesion contrast enhancement in medical ultrasound imaging. IEEE Trans. Med. Imaging 16(4):416–425, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Abbas, A. A., Guo, X., Tan, W. H., and Jalab, H. A., Combined spline and B-spline for an improved automatic skin lesion segmentation in dermoscopic images using optimal color channel. J. Med. Syst. 38(8):1–8, 2014.

    Article  Google Scholar 

  18. Horsch, K., Giger, M. L., Venta, L. A., and Vyborny, C. J., Computerized diagnosis of breast lesions on ultrasound. Med. Phys. 29(2):157–164, 2002.

    Article  PubMed  Google Scholar 

  19. Moon, W. K., Huang, Y. S., Lo, C. M., Huang, C. S., Bae, M. S., Kim, W. H., and Chang, R. F., Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features. Med. Phys. 42(6):3024–3035, 2015.

    Article  PubMed  Google Scholar 

  20. Madabhushi, A., and Metaxas, D. N., Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans. Med. Imaging 22(2):155–169, 2003.

    Article  PubMed  Google Scholar 

  21. Noble, J. A., and Boukerroui, D., Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8):987–1010, 2006.

    Article  PubMed  Google Scholar 

  22. Torbati, N., Ayatollahi, A., and Kermani, A., An efficient neural network based method for medical image segmentation. Comput. Biol. Med. 44:76–87, 2014.

    Article  PubMed  Google Scholar 

  23. Tahmasbi, A., Saki, F., and Shokouhi, S. B., Classification of benign and malignant masses based on Zernike moments. Comput. Biol. Med. 41(8):726–735, 2011.

    Article  PubMed  Google Scholar 

  24. Saki, F., Tahmasbi, A., Soltanian-Zadeh, H., and Shokouhi, S. B., Fast opposite weight learning rules with application in breast cancer diagnosis. Comput. Biol. Med. 43(1):32–41, 2013.

    Article  PubMed  Google Scholar 

  25. Liu, X., and Tang, J., Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Syst. J. 8(3):910–920, 2014.

    Article  Google Scholar 

  26. Reyad, Y. A., Berbar, M. A., and Hussain, M., Comparison of statistical, LBP, and multi-resolution analysis features for breast mass classification. J. Med. Syst. 38(9):1–15, 2014.

    Article  Google Scholar 

  27. Zhang, X., Liu, W., Dundar, M., Badve, S., and Zhang, S., Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans. Med. Imaging 34(2):496–506, 2015.

    Article  PubMed  Google Scholar 

  28. Casti, P., Mencattini, A., Salmeri, M., and Rangayyan, R. M., Analysis of structural similarity in mammograms for detection of bilateral asymmetry. IEEE Trans. Med. Imaging 34(2):662–671, 2015.

    Article  PubMed  Google Scholar 

  29. Zhu, H., Yang, Y., Zhu, X., Gui, Z., and Shu, H., General form for obtaining unit disc-based generalized orthogonal moments. IEEE Trans. Image Process. 23(12):5455–5469, 2014.

    Article  PubMed  Google Scholar 

  30. Wünsche, A., Generalized Zernike or disc polynomials. J. Comput. Appl. Math. 174(1):135–163, 2005.

    Article  Google Scholar 

  31. Jing, H., Yang, Y., and Nishikawa, R. M., Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer. Med. Phys. 39(2):676–685, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goudas, T., and Maglogiannis, I., An advanced image analysis tool for the quantification and characterization of breast cancer in microscopy images. J. Med. Syst. 39(3):1–13, 2015.

    Article  Google Scholar 

  33. Ge, J., Sahiner, B., Hadjiiski, L. M., Chan, L. M., Wei, J., Helvie, M. A., and Zhou, C., Computer aided detection of clusters of microcalcifications on full field digital mammograms. Med. Phys. 33(8):2975–2988, 2006.

    Article  PubMed  Google Scholar 

  34. Naghibi, S., Teshnehlab, M., and Shoorehdeli, M. A., Breast cancer classification based on advanced multi dimensional fuzzy neural network. J. Med. Syst. 36(5):2713–2720, 2012.

    Article  PubMed  Google Scholar 

  35. Lin, K. C., and Hsieh, Y. H., Classification of medical datasets using SVMs with hybrid evolutionary algorithms based on endocrine-based particle swarm optimization and artificial bee colony algorithms. J. Med. Syst. 39(10):1–9, 2015.

    CAS  Google Scholar 

  36. Tsai, M. H., Wang, H. C., Lee, G. W., Lin, Y. C., and Chiu, S. H., A decision tree based classifier to analyze human ovarian cancer cDNA microarray datasets. J. Med. Syst. 40(1):1–8, 2016.

    Article  Google Scholar 

  37. Dheeba, J., and Selvi, S. T., A swarm optimized neural network system for classification of microcalcification in mammograms. J. Med. Syst. 36(5):3051–3061, 2012.

    Article  CAS  PubMed  Google Scholar 

  38. Dheeba, J., and Selvi, S. T., An improved decision support system for detection of lesions in mammograms using differential evolution optimized wavelet neural network. J. Med. Syst. 36(5):3223–3232, 2012.

    Article  CAS  PubMed  Google Scholar 

  39. Chao, C. M., Yu, Y. W., Cheng, B. W., and Kuo, Y. L., Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree. J. Med. Syst. 38(10):1–7, 2014.

    Article  Google Scholar 

  40. Zakeri, F. S., Behnam, H., and Ahmadinejad, N., Classification of benign and malignant breast masses based on shape and texture features in sonography images. J. Med. Syst. 36(3):1621–1627, 2012.

    Article  PubMed  Google Scholar 

  41. Dheeba, J., Singh, N. A., and Selvi, S. T., Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 49:45–52, 2014.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, J., Walter, G. G., Miao, Y., and Lee, W. N. W., Wavelet neural networks for function learning. IEEE Trans. Signal Process. 43(6):1485–1497, 1995.

    Article  Google Scholar 

  43. Chauhan, N., Ravi, V., and Chandra, D. K., Differential evolution trained wavelet neural networks: application to bankruptcy prediction in banks. Expert Syst. Appl. 36(4):7659–7665, 2009.

    Article  Google Scholar 

  44. Vesterstrøm, J., and Thomsen, R., A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress on Evolutionary Computation, 2004. CEC2004. Vol. 2, pp. 1980–1987. IEEE, Chicago, 2004.

  45. Wang, L., Zeng, Y., and Chen, T., Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2):855–863, 2015.

    Article  Google Scholar 

  46. Suckling, J., Parker, J., Dance, D., Astley, S., Astley, I., Hutt, I., and Boggis, C., The mammographic images analysis society digital mammogram database. Exerpta Med. 1069:375–378, 1994.

    Google Scholar 

  47. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, W., Moore, R., Chang, K., and Munishkumaran, S., Current status of the digital database for screening mammography. In: Digital Mammography. Springer, The Netherlands, pp. 457–460, 1998.

    Chapter  Google Scholar 

  48. Metz, C. E., Quantification of failure to demonstrate statistical significance: the usefulness of confidence intervals. Investig. Radiol. 28(1):59–63, 1993.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Urooj, S. An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier. J Med Syst 40, 105 (2016). https://doi.org/10.1007/s10916-016-0454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0454-0

Keywords

Navigation