Skip to main content

Advertisement

Log in

An Automatic 3-D Reconstruction of Coronary Arteries by Stereopsis

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Stereopsis of X-ray images can produce 3D tree of coronary arteries up to a certain accuracy level with a lower dose of radiation when compared to computer tomography (CT). In this study, a novel and complete automatic system is designed that covers preprocessing, segmentation, matching and reconstruction steps for that purpose. First, an automatic and novel pattern recognition technique is applied for extraction of the bifurcation points with their diameters recorded in a map. Then, a novel optimization algorithm is run for matching the branches efficiently which is based on that map and the epipolar geometry of stereopsis. Finally, cut branches are fixed one by one at the bifurcations for completing the 3D reconstruction. This method prevails the similar ones in the literature with this novelty since it automatically and inherently prevents the wrong overlapping of branches. Other essential problems like correct detection of the bifurcations and accurate calibration parameters and fast overlapping of matched branches are addressed at acceptable levels. The accuracy of bifurcation extraction is high at 90 % with 96 % sensitivity. Accuracy of vessel centerlines has rootmean-square (rms) error smaller than 0.57 mm for 20 different patients. For phantom model, rms error is 0.75 ± 0.8 mm in 3D localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stehli, J., Fuchs, T. A., Bull, S., et al., Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography. J. Am. Coll. Cardiol. 64(8):772–780, 2014. doi:10.1016/j.jacc.2014.04.079.

    Article  PubMed  Google Scholar 

  2. Lee, J. B., Chang, S. G., Kim, S. Y., Lee, Y. S., Ryu, J. K., Choi, J. Y., Kim, K. S., and Par, J. S., Assessment of three dimensional quantitative coronary analysis by using rotational angiography for measurement of vessel length and diameter. Int. J. Cardiovasc. Imaging 28(7):1627–1634, 2012. doi:10.1007/s10554-011-9993-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Einstein, A. J., Moser, K. W., Thompson, R. C., Cerqueira, M. D., and Henzlova, M. J., Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305, 2007. doi:10.1161/CIRCULATIONAHA.107.688101.

    Article  PubMed  Google Scholar 

  4. Zifan, A., Liatsis, P., Kantartzis, P., Gavaises, M., Karcanias, N., and Katritsis, D., Automatic 3D reconstruction of coronary artery centerlines from monoplane X-ray angiogram images. Int. J. Biol. Med. Sci. 1(1):44–49, 2008.

    Google Scholar 

  5. Sadick, V., Reed, W., Collins, L., Sadick, N., Heard, R., and Robinson, J., Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Br. J. Radiol. 83:379–393, 2010. doi:10.1259/bjr/21696839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brost, A., Strobel, N., Yatziv, L., Gilson, W., Meyer, B., Hornegger, J., Lewin, J., Wacker, F., Accuracy of X-ray image based 3D localization from two C-arm views : a comparison between an ideal system and a real device. Medical Imaging Visualization, Image-Guided Procedures and Modeling Conference 7261:72611Z (10 pages), Bellingham, WA, USA. 2009. doi: 10.1117/12.811147.

  7. Nejati, M., and Pourghassem, H., Multiresolution image registration in digital X-ray angiography with intensity variation modeling. J. Med. Syst. 2014. doi:10.1007/s10916-014-0010-8.

    PubMed  Google Scholar 

  8. Daly, M. J., Siewerdsen, J. H., Cho, Y. B., Jaffray, D. A., and Irish, J. C., Geometric calibration of a mobile C-arm for intraoperative cone-beam CT. Med. Phys. 35(5):2124–2136, 2008. doi:10.1118/1.2907563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lacroix, R., Florent, R., Auvray, V. (2012) Model-based segmentation of the left main coronary bifurcation from 2D angiograms. 9th IEEE International Symposium on Biomedical Imaging Conference ISBI, 780-783, Barcelona, Spain. doi: 10.1109/ISBI.2012.6235664.

  10. Movassaghi, B., Garcia, J. A., Grass, M., Schaefer, D., Rasche, V., Wink, O., Chen, J. Y., Groves, B. M., Messenger, J. C., and Carroll, J. D., Three - dimensional gated reconstructed images of the coronary arteries based on rotational coronary angiography: first in human results. Circulation 114:507, 2006.

    Article  Google Scholar 

  11. Liao, R., Luc, D., Sun, Y., and Kirchberg, K., 3D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. Int. J. Cardiovasc. Imaging 26(7):733–749, 2010. doi:10.1007/s10554-009-9528-0.

    Article  PubMed  Google Scholar 

  12. Sarode, M. V., and Deshmukh, P. R., Three dimensional reconstruction of coronary arteries from two view X-ray angiographic images. Int. J. Comput. Theory Eng. 3(6):822–826, 2011. doi:10.7763/IJCTE.2011.V3.416.

    Article  Google Scholar 

  13. Yang, J., Wang, Y., Liu, Y., Tang, S., and Chen, W., Novel approach for 3-D reconstruction of coronary arteries from two uncalibrated angiographic images. IEEE Trans. Image Process. 18(7):1563–1572, 2009. doi:10.1109/TIP.2009.2017363.

    Article  PubMed  Google Scholar 

  14. Shoujn, Z., Jina, Y., Yongtian, W., and Wufan, C., Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking. Biomed. Eng. Online 9:40, 2010. doi:10.1186/1475-925X-9-40.

    Article  Google Scholar 

  15. Radeva, P., Toledo, R., Von, C. L., Villanueva, J., 3D vessel reconstruction from biplane angiograms using snakes. Proc Comp in Cardiol 73776 Cleveland. 1998. doi:10.1109/CIC.1998.731988.

  16. Canero, C., Vilarino, F., Mauri, J., and Radeva, P., Predictive (un)distortion model and 3-D reconstruction by biplane snakes. IEEE Trans. Med. Imaging 21(9):1188–1201, 2002. doi:10.1109/TMI.2002.804421.

    Article  PubMed  Google Scholar 

  17. Tuinenburg, J. C., Koning, G., Rares, A., Janssen, J. P., Lansky, A. J., and Reiber, J. H. C., Dedicated bifurcation analysis : basic principles. Int. J. Cardiovasc. Imaging 27(2):167–174, 2011. doi:10.1007/s10554-010-9795-9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Casciaro, M. E., Craiem, D., Graf, S., Gurfinkel, E. P., Armentano, R. L. Construction of a 3D coronary map to assess geometrical information in-vivo from coronary patients. Proc SABI Mar Del Plata, Argentina 332:20–29. 2011. doi:10.1088/1742-6596/332/1/012029.

  19. Chalopin, C., Finet, G., and Magnin, I. E., Modeling the 3D coronary tree for labeling purposes. Med. Image Anal. 5(4):301–315, 2001. doi:10.1016/S1361-8415(01)00047-0.

    Article  CAS  PubMed  Google Scholar 

  20. Iskurt, A., Becerikli, Y., and Mahmutyazicioglu, K., Automatic identification of landmarks for standard slice positioning in brain MRI. J. Magn. Reson. Imaging 34(3):499–510, 2011. doi:10.1002/jmri.22717.

    Article  PubMed  Google Scholar 

  21. Iskurt, A., Becerikli, Y., Mahmutayazıcıoğlu, K., A fast and automatic calibration of projectory images for 3D reconstruction of the branchy structures. Proc. IEEE, 47th Annual Conference on Information Sciences and Systems, 1–6, Baltimore, Maryland, USA. 2013. 10.1109/CISS.2013.6552282.

  22. Bayraktar, H. K., Mutlu, O., Iskurt, A., Automatic noise reduction in coronary angiography video data by morphological operations. Proc. IEEE, Signal Processing and Communications Applications Conference (SIU), 2014 22nd, Trabzon, TURKEY. 2014. doi: 10.1109/SIU.2014.6830687.

  23. Chen, S. T., et al., DWT-based segmentation method for coronary arteries, 2014. J. Med. Syst. 2014. doi:10.1007/s10916-014-0055-8.

    Google Scholar 

  24. Cai, K., Yang, R., Li, L., Ou, S., Chen, Y., and Dou, J., A semi-automatic coronary artery segmentation framework using mechanical simulation. J. Med. Syst. 2015. doi:10.1007/s10916-015-0329-9.

    Google Scholar 

  25. Trucco, E., and Verri, A., Introductory Techniques for 3 - D Computer Vision. Prentice Hall Inc Press, USA, 1998.

    Google Scholar 

  26. Chen, S. Y. J., Carroll, J. D., and Messenger, J. C., Quantitative analysis of reconstructed 3-D coronary arterial tree and intracoronary devices. IEEE Trans. Med. Imaging 21(7):724–740, 2002. doi:10.1109/TMI.2002.801151.

    Article  PubMed  Google Scholar 

  27. Tu, S., Koning, G., Jukema, W., and Reiber, J. H. C., Assessment of obstruction length and optimal viewing angle from biplane X-ray angiograms. Int. J. Cardiovasc. Imaging 26(1):5–17, 2010. doi:10.1007/s10554-009-9509-3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kitslaar PH, Marquering HA, Jukema WJ, Koning G, Nieber M, Vossepoel AM, Bax JJ Reiber JHC (2008) Automated determination of optimal angiographic viewing angles for coronary artery bifurcations from CTA data. Proc SPIE 6918 Medical Imaging: Visualization, Image-guided Procedures and Modeling, San Diego CA, USA. doi:10.1117/12.770255.

Download references

Acknowledgments

We specially thank to Prof. Omer Etlik and Prof Kamran Mahmutyazıcıoğlu(Fatih University, Sema Application and Research Hospital, Istanbul, Turkey) and Dr. Fatih Beşiroğlu (Marmara University, Pendik Application and Research Hospital, Istanbul, Turkey) for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufit Cetin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, M., Iskurt, A. An Automatic 3-D Reconstruction of Coronary Arteries by Stereopsis. J Med Syst 40, 94 (2016). https://doi.org/10.1007/s10916-016-0455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0455-z

Keywords

Navigation