Skip to main content

Advertisement

Log in

Design and Development of a Sharable Clinical Decision Support System Based on a Semantic Web Service Framework

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Clinical decision support (CDS) systems provide clinicians and other health care stakeholders with patient-specific assessments or recommendations to aid in the clinical decision-making process. Despite their demonstrated potential for improving health care quality, the widespread availability of CDS systems has been limited mainly by the difficulty and cost of sharing CDS knowledge among heterogeneous healthcare information systems. The purpose of this study was to design and develop a sharable clinical decision support (S-CDS) system that meets this challenge. The fundamental knowledge base consists of independent and reusable knowledge modules (KMs) to meet core CDS needs, wherein each KM is semantically well defined based on the standard information model, terminologies, and representation formalisms. A semantic web service framework was developed to identify, access, and leverage these KMs across diverse CDS applications and care settings. The S-CDS system has been validated in two distinct client CDS applications. Model-level evaluation results confirmed coherent knowledge representation. Application-level evaluation results reached an overall accuracy of 98.66 % and a completeness of 96.98 %. The evaluation results demonstrated the technical feasibility and application prospect of our approach. Compared with other CDS engineering efforts, our approach facilitates system development and implementation and improves system maintainability, scalability and efficiency, which contribute to the widespread adoption of effective CDS within the healthcare domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brown, G. C., Brown, M. M., and Sharma, S., Health care in the 21st century: Evidence-based medicine, patient preference-based quality, and cost effectiveness. Qual. Manag. Health Care 9(1):23–31, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Schoen, C., Osborn, R., Squires, D., Doty, M., Pierson, R., and Applebaum, S., New 2011 survey of patients with complex care needs in eleven countries finds that care is often poorly coordinated. Health Aff. 30(12):2437–2448, 2011.

    Article  Google Scholar 

  3. Van Den Bos, J., Rustagi, K., Gray, T., Halford, M., Ziemkiewicz, E., and Shreve, J., The $17.1 billion problem: the annual cost of measurable medical errors. Health Aff. 30(4):596–603, 2011.

    Article  Google Scholar 

  4. Osheroff, J. A., Teich, J. M., Middleton, B., Steen, E. B., Wright, A., and Detmer, D. E., A roadmap for national action on clinical decision support. J. Am. Med. Inform. Assoc. 14(2):141–145, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garg, A. X., Adhikari, N. K., McDonald, H., Rosas-Arellano, M. P., Devereaux, P. J., Beyene, J., Sam, J., and Haynes, R. B., Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. JAMA 293(10):1223–1238, 2005. doi:10.1001/jama.293.10.1223.

    Article  CAS  PubMed  Google Scholar 

  6. Jaspers, M. W., Smeulers, M., Vermeulen, H., and Peute, L. W., Effects of clinical decision-support systems on practitioner performance and patient outcomes: A synthesis of high-quality systematic review findings. J. Am. Med. Inform. Assoc. 18(3):327–334, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  7. António Ferreira Rodrigues Nogueira dos Santos, M., Tygesen, H., Eriksson, H., Herlitz, J., Clinical decision support system (CDSS)–effects on care quality. Int. J. Health Care Qual. Assur. 27(8):707–718, 2014.

  8. Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., Morton, S. C., and Shekelle, P. G., Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 144(10):742–752, 2006.

    Article  PubMed  Google Scholar 

  9. Roshanov, P. S., Fernandes, N., Wilczynski, J. M., Hemens, B. J., You, J. J., Handler, S. M., Nieuwlaat, R., Souza, N. M., Beyene, J., and Van Spall, H. G., Features of effective computerised clinical decision support systems: Meta-regression of 162 randomised trials. Br. Med. J. (Clin. Res. Ed.) 346:f657, 2013.

    Google Scholar 

  10. Kawamoto, K., Fiol, G. D., Lobach, D. F., and Jenders, R. A., Standards for scalable clinical decision support: Need, current and emerging standards, gaps, and proposal for progress. Open Med. Inform. J. 4(1):235–244, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. National Library of Medicine. Unified Medical Language System (UMLS). https://www.nlm.nih.gov/research/umls/. Accessed 17 Nov 2015.

  12. International Health Terminology Standards Development Organisation. Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT). http://www.ihtsdo.org/snomed-ct/. Accessed 17 Nov 2015.

  13. Regenstrief Institute. Logical Observation Identifiers Names and Codes (LOINC). http://loinc.org/. Accessed 17 Nov 2015.

  14. World Health Organization. International Classification of Diseases (ICD). http://www.who.int/classifications/icd/en/. Accessed 17 nov 2015.

  15. Ahmadian, L., van Engen-Verheul, M., Bakhshi-Raiez, F., Peek, N., Cornet, R., and de Keizer, N. F., The role of standardized data and terminological systems in computerized clinical decision support systems: Literature review and survey. Int. J. Med. Inform. 80(2):81–93, 2011.

    Article  PubMed  Google Scholar 

  16. OpenEHR. http://www.openehr.org/. Accessed 17 Nov 2015.

  17. HL7. http://www.hl7.org/. Accessed 17 Nov 2015.

  18. HL7 Version 3 Standard: Virtual Medical Record (vMR) Logical Model, Release 2. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=338. Accessed 17 Nov 2015.

  19. Marcos, C., González-Ferrer, A., Peleg, M., and Cavero, C., Solving the interoperability challenge of a distributed complex patient guidance system: A data integrator based on HL7’s virtual medical record standard. J. Am. Med. Inform. Assoc. 22(3):587–599, 2015.

    PubMed  Google Scholar 

  20. Iannaccone, M., Esposito, M., and De Pietro, G., GLM-CDS: a standards-based verifiable guideline model for decision support in clinical applications. In: Riaño, D., Lenz, R., Miksch, S., Peleg, M., Reichert, M., ten Teije, A., (Eds.), Process Support and Knowledge Representation in Health Care. pp. 143–157. Springer International Publishing, 2013.

  21. González-Ferrer, A., Peleg, M., Verhees, B., Verlinden J.-M., and Marcos, C., Data integration for clinical decision support based on openEHR archetypes and HL7 virtual medical record. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A., (Eds.), Process Support and Knowledge Representation in Health Care. pp. 71–84. Springer Berlin Heidelberg, 2013. http://link.springer.com/chapter/10.1007%2F978-3-642-36438-9_5#page-1

  22. Audet, A. M., Greenfield, S., and Field, M., Medical practice guidelines: Current activities and future directions. Ann. Intern. Med. 113(9):709–714, 1990.

    Article  CAS  PubMed  Google Scholar 

  23. Peleg, M., Computer-interpretable clinical guidelines: A methodological review. J. Biomed. Inform. 46(4):744–763, 2013.

    Article  PubMed  Google Scholar 

  24. Alterovitz, G., Xiang, M., Hill, D. P., Lomax, J., Liu, J., Cherkassky, M., Dreyfuss, J., Mungall, C., Harris, M. A., and Dolan, M. E., Ontology engineering. Nat. Biotechnol. 28(2):128–130, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loya, S. R., Kawamoto, K., Chatwin, C., and Huser, V., Service oriented architecture for clinical decision support: A systematic review and future directions. J. Med. Syst. 38(12):1–22, 2014.

    Article  Google Scholar 

  26. HL7 Decision Support Service (DSS). http://www.hl7.org/implement/standards/product_brief.cfm?product_id=12. Accessed 17 Nov 2015.

  27. Healthcare Services Specification Program (HSSP). https://hssp.wikispaces.com/. Accessed 17 Nov 2015.

  28. S&I framework. http://siframework.org/. Accessed 17 Nov 2015.

  29. HL7 Implementation Guide: Decision Support Service, Release 1. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=334. Accessed 17 Nov 2015.

  30. HL7 Standard: Clinical Decision Support Knowledge Artifact Specification, Release 1.3. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=337. Accessed 17 Nov 2015.

  31. Gonzalez-Ferrer, A., Peleg, M., Parimbelli, E., Shalom, E., Marcos, C., Klebanov, G., Martinez-Sarriegui, I., Fung, N. L. S., and Broens, T., Use of the virtual medical record data model for communication among components of a distributed decision-support system. In: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBSInternational Conference on 2014 Jun 1, IEEE, pp. 526–530, 2014.

  32. OpenCDS http://www.opencds.org/. Accessed 17 Nov 2015.

  33. Berners-Lee, T., Hendler, J., Lassila, O., and Berners-Lee, T., The semantic web, scientific american. Lect. Notes Comput. Sci 284:34–43, 2001.

    Google Scholar 

  34. Mcilraith, S. A., Son, T. C., and Zeng, H., Semantic web services. IEEE Intell. Syst. 16(2):46–53, 2001.

    Article  Google Scholar 

  35. Martin, D., Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S., Paolucci, M., Parsia, B., and Payne, T. R., OWL-S: semantic markup for web services. Service Conversation Languagew3c Note. 2004. http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/

  36. Domingue, J., Roman, D., and Stollberg, M., Web Service Modeling Ontology (WSMO): an ontology for Semantic Web Services. In: W3c Workshop on Frameworks for Semantics in Web Services, pp. 776–784, 2005.

  37. Lathem, J., Gomadam, K., and Sheth, A. P., SA-REST and (S) mashups: Adding semantics to RESTful services. IEEE, 2007. 2012 IEEE Sixth International Conference on Semantic Computing, 2012 IEEE Sixth International Conference on Semantic Computing 2007, pp. 469–476. doi:10.1109/ICSC.2007.94

  38. Lobov, A., Lopez, F. U., Herrera, V. V., and Puttonen, J., Semantic Web Services framework for manufacturing industries. In: Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on 2009 Feb 22, IEEE, pp. 2104–2108, 2009.

  39. Gugliotta, A., Domingue, J., Cabral, L., Tanasescu, V., Galizia, S., Davies, R., Villarias, L. G., Rowlatt, M., Richardson, M., and Stincic, S., Deploying semantic web services-based applications in the e-government domain. In: Spaccapietra, S., (Ed.), Journal on Data Semantics X. pp. 96–132. Springer Berlin Heidelberg, 2008. http://link.springer.com/chapter/10.1007/978-3-540-77688-8_4#page-1

  40. Casteleiro, M. A., and Diz, J. J. D., Clinical practice guidelines: A case study of combining OWL-S, OWL, and SWRL. Springer, London, 2008.

    Google Scholar 

  41. Hu, Z., Li, J. S., Zhou, T. S., Yu, H. Y., Suzuki, M., and Araki, K., Ontology-based clinical pathways with semantic rules. J. Med. Syst. 36(4):2203–2212, 2012. doi:10.1007/s10916-011-9687-0.

    Article  PubMed  Google Scholar 

  42. Wang, H.-Q., Zhou, T.-S., Zhang, Y.-F., Chen, L., and Li, J.-S., Research and development of semantics-based sharable clinical pathway systems. J. Med. Syst. 39(7):1–11, 2015.

    Article  Google Scholar 

  43. Wang, H.-q., T-s, Z., L-l, T., Y-m, Q., and J-s, L., Creating hospital-specific customized clinical pathways by applying semantic reasoning to clinical data. J. Biomed. Inform. 52:354–363, 2014.

    Article  PubMed  Google Scholar 

  44. Wang, H. Q., Li, J. S., Zhang, Y. F., Suzuki, M., and Araki, K., Creating personalised clinical pathways by semantic interoperability with electronic health records. Artif. Intell. Med. 58(2):81–89, 2013. doi:10.1016/j.artmed.2013.02.005.

    Article  PubMed  Google Scholar 

  45. Zhang, Y.-F., Tian, Y., Zhou, T.-S., Araki, K., and Li, J.-S., Integrating HL7 RIM and ontology for unified knowledge and data representation in clinical decision support systems. Comput. Methods Prog. Biomed. 123:94–108, 2016.

  46. Rubin, D. L., Moreira, D. A., Kanjamala, P., Musen, M. A., BioPortal: a web portal to biomedical ontologies. AAAI Spring Symposium - Technical Report:74–77, 2008.

  47. HL7 Version 3 Standard: Implementation Technology Specification R2 - ISO Harmonized Datatypes, R1. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=48. Accessed 17 Nov 2015.

  48. Protégé. http://protege.stanford.edu. Accessed 17 Nov 2015.

  49. OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/. Accessed 17 Nov 2015.

  50. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. http://www.daml.org/2004/04/swrl/. Accessed 17 Nov 2015.

  51. Battle, R., and Benson, E., Bridging the semantic Web and Web 2.0 with Representational State Transfer (REST). Web Semant. Sci. Serv. Agents World Wide Web 6(1):61–69, 2008.

    Article  Google Scholar 

  52. Costa, B., Pires, P. F., Delicato, F. C., Merson, P. Evaluating a Representational State Transfer (REST) architecture: what is the impact of REST in my architecture? In: 2014 IEEE/IFIP Conference on Software Architecture (WICSA), pp. 105–114, 2014.

  53. Eclipse. http://www.eclipse.org/. Accessed 17 Nov 2015.

  54. Jersey. https://jersey.java.net/. Accessed 17 Nov 2015.

  55. JSR-000311 JAX-RS: The Java API for RESTful Web Services. https://jcp.org/aboutJava/communityprocess/final/jsr311/index.html. Accessed 17 Nov 2015.

  56. Apache Jena. http://jena.apache.org/. Accessed 17 Nov 2015.

  57. Apache Tomcat. http://tomcat.apache.org/. Accessed 17 Nov 2015.

  58. Gómez-Pérez, A., Ontology evaluation. In: Staab, S., Studer, R., (Eds.), Handbook on Ontologies. pp. 251–273. Springer Berlin Heidelberg, 2004. http://link.springer.com/chapter/10.1007/978-3-540-24750-0_13#page-1

  59. Sirin E, Parsia B, Grau B C, et al. Pellet: a practical owl-dl reasoner[J]. Web Semantics: science, services and agents on the World Wide Web. 5(2):51–53, 2007.

  60. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. http://www.w3.org/TR/xmlschema11-2/. Accessed 17 Nov 2015.

  61. Tian, Y., Zhou, T.-S., Wang, Y., Zhang, M., and Li, J.-S., Design and development of a mobile-based system for supporting emergency triage decision making. J. Med. Syst. 38(6):1–10, 2014.

    Article  Google Scholar 

  62. National Guideline Clearinghouse. http://www.guideline.gov/. Accessed 17 Nov 2015.

  63. Chinese Clinical Pathways. http://www.ch-cp.org.cn/. Accessed 17 Nov 2015.

  64. Demner-Fushman, D., Chapman, W. W., and McDonald, C. J., What can natural language processing do for clinical decision support? J. Biomed. Inform. 42(5):760–772, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wilk, S., Kezadri-Hamiaz, M., Rosu, D., Kuziemsky, C., Michalowski, W., Amyot, D., and Carrier, M., Using semantic components to represent dynamics of an interdisciplinary healthcare team in a multi-agent decision support system. J. Med. Syst. 40(2):1–12, 2015. doi:10.1007/s10916-015-0375-3.

    Google Scholar 

  66. Kilic, Y. A., and Kilic, I., A novel fuzzy logic inference system for decision support in weaning from mechanical ventilation. J. Med. Syst. 34(6):1089–1095, 2009. doi:10.1007/s10916-009-9327-0.

    Article  PubMed  Google Scholar 

  67. Kuo, K.-L., and Fuh, C.-S., A rule-based clinical decision model to support interpretation of multiple data in health examinations. J. Med. Syst. 35(6):1359–1373, 2009. doi:10.1007/s10916-009-9413-3.

    Article  PubMed  Google Scholar 

  68. Kawamoto, K., Del, F. G., Strasberg, H. R., Hulse, N., Curtis, C., Cimino, J. J., Rocha, B. H., Maviglia, S., Fry, E., and Scherpbier, H. J., Multi-national, multi-institutional analysis of clinical decision support data needs to inform development of the HL7 virtual medical record standard. AMIA Annu. Symp. Proc. 2010:377–381, 2010.

  69. Hoehndorf, R., Evaluation of research in biomedical ontologies. Brief. Bioinform. 14(6):696–712, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Peleg, M., Keren, S., and Denekamp, Y., Mapping computerized clinical guidelines to electronic medical records: Knowledge-data ontological mapper (KDOM). J. Biomed. Inform. 41(1):180–201, 2008. doi:10.1016/j.jbi.2007.05.003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-tech R&D Program (No. 2013AA041201, 2015AA020109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Song Li.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Gou, L., Tian, Y. et al. Design and Development of a Sharable Clinical Decision Support System Based on a Semantic Web Service Framework. J Med Syst 40, 118 (2016). https://doi.org/10.1007/s10916-016-0472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0472-y

Keywords

Navigation