Skip to main content

Advertisement

Log in

Sensitive Patient Data Hiding using a ROI Reversible Steganography Scheme for DICOM Images

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The exchange of medical images over the Internet has evoked significant interest over the past few years due to the introduction of web and cloud based medical information systems. The protection of sensitive data has always been a key indicator in the performance of such systems. In this context, this work presents an algorithm developed for Digital Imaging and Communications in Medicine (DICOM) medical images, which applies secret-sharing steganography methods for ensuring the integrity of sensitive patient data as well as the important parts of the image. In the proposed algorithm, images are divided into two parts: the region of interest (ROI) and the region of non interest (RONI). Patient data and integrity hashes are positioned inside the ROI while the information (map) needed to recover the ROI before insertion is positioned in the RONI. Security of the extraction process is assured through the use of cryptography. The experimental results prove that the original (cover) images and the stego images provide an excellent visual equality result in terms of PSNR. Furthermore, they prove that the proposed scheme can be efficiently used as a steganography scheme in DICOM images with limited smooth areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kagadis, G. C., Kloukinas, C., Moore, K., Philbin, J., Papadimitroulas, P., Alexakos, C., Nagy, P. G., Visvikis, D., and Hendee, W. R., Cloud computing in medical imaging. Med. Phys. 40(7):070901, 2013. doi:10.1118/1.4811272.

    Article  PubMed  Google Scholar 

  2. Teng, C., Mitchell, J., Walker, C., Swan, A., Davila, C., Howard, D., and Needham, T, A medical image archive solution in the cloud. In: IEEE international conference on software engineering and service sciences (ICSESS), Beijing, China, pp 431–434, 2010 doi: 10.1109/ICSESS.2010.5552343.

  3. Maglogiannis, I., Delakouridis, C., and Kazatzopoulos, L., Enabling collaborative medical diagnosis over the internet via peer-to-peer distribution of electronic health records. J. Med. Syst. 30:107–116, 2006. doi:10.1007/s10916-005-7984-1.

    Article  PubMed  Google Scholar 

  4. Nergui, M., Acharya, U. S., Acharya, R., and Yu, W., Reliable and robust transmission and storage techniques for medical images with patient information. J. Med. Syst. 34:1129–1139, 2010. doi:10.1007/s10916-009-9332-3.

    Article  PubMed  Google Scholar 

  5. National Electrical Manufacturers Association. Digital imaging and communications in medicine (DICOM). http://dicom.nema.org/standard.html. Accessed 16 December 2015, 2015.

  6. Al-Qershi, O. M., and Khoo, B. E., Authentication and data hiding using a hybrid ROI-based watermarking scheme for DICOM images. J. Digit. Imaging 24:114–125, 2011. doi:10.1007/s10278-009-9253-1.

    Article  PubMed  Google Scholar 

  7. Guo, X., and Zhuang, T. G., A region-based lossless watermarking scheme for enhancing security of medical data. J. Digit. Imaging 22:53–64, 2007. doi:10.1007/s10278-007-9043-6.

    Article  PubMed Central  Google Scholar 

  8. Giakoumaki, A., Pavlopoulos, S., and Koutsouris, D., Multiple image watermarking applied to health information management. IEEE Trans. Inf. Technol. Biomed. 10(4):722–732, 2006. doi:10.1109/TITB.2006.875655.

    Article  PubMed  Google Scholar 

  9. Tian, J., Reversible data embedding using a difference expansion. IEEE Trans. Circ. Syst. Video 13(8):890–896, 2003. doi:10.1109/TCSVT.2003.815962.

    Article  Google Scholar 

  10. Coatrieux, G., Lecornu, L., Roux. Ch., and Sankur, B, A review of image watermarking applications in healthcare. In: Proc. of 28thAnnual International Conference Engineering in Medicine and Biology Society, EMBS ’06. New York: IEEE, pp. 4691–4694, 2006. doi: 10.1109/IEMBS.2006.259305.

  11. Wang, H., and Wang, S., Cyber warfare: Steganography vs. steganalysis. Commun. ACM 47(10):76–82, 2004. doi:10.1145/1022594.1022597.

    Article  Google Scholar 

  12. Mielikainen, J., LSB matching revisited. IEEE Signal Proc. Lett. 13(5):285–287, 2006. doi:10.1109/LSP.2006.870357.

    Article  Google Scholar 

  13. Chan, C. K., and Cheng, L. M., Hiding data in images by simple LSB substitution. Pattern Recogn. 37(3):469–474, 2004. doi:10.1016/j.patcog.2003.08.007.

    Article  Google Scholar 

  14. Zhang, X., and Wang, S., Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 10(11):781–783, 2006. doi:10.1109/LCOMM.2006.060863.

    Article  Google Scholar 

  15. Chao, R. M., Wu, H. C., Lee, C. C., and Chu, Y. P., A novel image data hiding scheme with diamond encoding. EURASIP J. Inf. Secur. 2009:1–9, 2009. doi:10.1155/2009/658047.

    Article  Google Scholar 

  16. Hong, W., and Chen, T., A novel data embedding method using adaptive pixel pair matching. IEEE Trans. Inf. Forensic Secur. 7:176–184, 2012. doi:10.1109/TIFS.2011.2155062.

    Article  Google Scholar 

  17. Wu, D. C., and Tsai, W. H., A steganographic method for images by pixel-value differencing. Pattern Recogn. Lett. 24(9–10):1613–1626, 2003. doi:10.1016/S0167-8655(02)00402-6.

    Article  Google Scholar 

  18. Yang, C. H., Weng, C. Y., Wang, S. J., and Sun, H. M., Adaptive data hiding in edge areas of images with spatial LSB domain systems. IEEE Trans. Inf. Forensic Secur. 3(3):488–497, 2008. doi:10.1109/TIFS.2008.926097.

    Article  Google Scholar 

  19. Luo, W., Huang, F., and Huang, J., Edge adaptive image steganography based on LSB matching revisited. IEEE Trans Inf Forensics 5(2):201–214, 2010. doi:10.1109/TIFS.2010.2041812.

    Article  Google Scholar 

  20. Hong, W., Chen, T. S., and Luo, C. W., Data embedding using pixel value differencing and diamond encoding with multiple-base notational system. J Syst. Softw. 85(5):1166–1175, 2012. doi:10.1016/j.jss.2011.12.045.

    Article  Google Scholar 

  21. Liu, J., Tang, G., and Sun, Y., A secure steganography for privacy protection in healthcare system. J. Med. Syst. 37:9918, 2013. doi:10.1007/s10916-012-9918-z.

    Article  PubMed  Google Scholar 

  22. Muhammad, K., Sajjad, M., and Baik, S. W., Dual-level security based cyclic18 steganographic method and its application for secure transmission of keyframes during wireless capsule endoscopy. J. Med. Syst. 40:114, 2016. doi:10.1007/s10916-016-0473-x.

    Article  PubMed  Google Scholar 

  23. Yuan, H. D., Secret sharing with multi-cover adaptive steganography. Inf. Sci. 254:197–212, 2014. doi:10.1016/j.ins.2013.08.012.

    Article  Google Scholar 

  24. Aryanto, K. Y., Oudkerk, M., and van Ooijen, P. M., Free DICOM de-identification tools in clinical research: Functioning and safety of patient privacy. Eur. Radiol. 25(12):3685–3695, 2015. doi:10.1007/s00330-015-3794-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vairalkar, M. K., and Nimbhorkar, S. U., Edge detection of images using Sobel operator. Int. J. Emerg. Technol. Adv. Eng. 2:291–293, 2012. ISSN 2250–2459.

    Google Scholar 

  26. Daemen, J., and Rijmen, V., The design of rijndael: AES - the advanced encryption standard. Springer, Berlin Germany, 2002.

    Book  Google Scholar 

  27. Thakur, J., and Kumar, N., DES, AES and blowfish: Symmetric key cryptography algorithms simulation based performance analysis. Int. J. Emerg. Technol. Adv. Eng. 1(2):6–12, 2011. ISSN 2250–2459.

    Google Scholar 

  28. Ker, A. D., and Böhme, R., Revisiting weighted stego-image steganalysis. In: Delp, E. J., Wong, P. W., Dittmann, J., Memon, N. D. (Ed.) Security, Forensics, Steganography, and Watermarking of Multimedia Contents X (Proc of SPIE), Volume 6819, San Jose, CA, 2008. doi: 10.1117/12.766820.

  29. Ker, A. D., A general framework for the structural steganalysis of LSB replacement. In: Barni, M., Herrera, J., Katzenbeisser, S., and Pérez-González, F. (Eds.), Lect notes comput Sc, 7th international workshop, vol. 3727. Springer, Berlin, pp. 296–311, 2005. doi:10.1007/11558859_22.

    Google Scholar 

  30. Jessica Fridrich. Structural LSB detectors. http://dde.binghamton.edu/download/structural_lsb_detectors/. Accessed 16 December 2015.

  31. Nayak, J., Bhat, P. S., Rajendra Acharya, U., and Sathish Kumar, M., Efficient storage and transmission of digital fundus images with patient information using reversible watermarking technique and error control codes. J. Med. Syst. 33(3):163–171, 2009. doi:10.1007/s10916-008-9176-2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Maglogiannis.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantos, P.L.K., Maglogiannis, I. Sensitive Patient Data Hiding using a ROI Reversible Steganography Scheme for DICOM Images. J Med Syst 40, 156 (2016). https://doi.org/10.1007/s10916-016-0514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0514-5

Keywords

Navigation