Skip to main content

Advertisement

Log in

An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common neurological disorders which is characterized by the spontaneous and unforeseeable occurrence of seizures. An automatic prediction of seizure can protect the patients from accidents and save their life. In this article, we proposed a mobile-based framework that automatically predict seizures using the information contained in electroencephalography (EEG) signals. The wireless sensor technology is used to capture the EEG signals of patients. The cloud-based services are used to collect and analyze the EEG data from the patient’s mobile phone. The features from the EEG signal are extracted using the fast Walsh-Hadamard transform (FWHT). The Higher Order Spectral Analysis (HOSA) is applied to FWHT coefficients in order to select the features set relevant to normal, preictal and ictal states of seizure. We subsequently exploit the selected features as input to a k-means classifier to detect epileptic seizure states in a reasonable time. The performance of the proposed model is tested on Amazon EC2 cloud and compared in terms of execution time and accuracy. The findings show that with selected HOS based features, we were able to achieve a classification accuracy of 94.6 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Subasia, A., and Ercelebi, E., Classification of EEG signals using neural network and logistic regression. Comput. Methods Prog. Biomed. 78:87–99, 2005. doi:10.1016/j.cmpb.2004.10.009.

    Article  Google Scholar 

  2. World Health Organization. http://www.who.int/mental_health/management/neurological/en/ (2015)

  3. Kwan, P., and Brodie, M.J., Early identification of refractory epilepsy. N. Engl. J. Med. 342:314–319, 2000. doi:10.1056/NEJM200002033420503.

    Article  CAS  PubMed  Google Scholar 

  4. Bellon, M., Panelli, R.J., Rillotta, F., Epilepsy-related deaths: An Australian survey of the experiences and needs of people bereaved by epilepsy. Seizure 29:162–168, 2015. doi:10.1016/j.seizure.2015.05.007.

    Article  PubMed  Google Scholar 

  5. Shoeb, A.: Application of machine learning to epileptic seizure onset detection and treatment (Ph.D. thesis). Harvard University-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/54669 (2009)

  6. Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G., Epileptic seizures may begin hours in advance of clinical onset: A report of five patients. Neuron 30:51–64, 2001. doi:10.1016/S0896-6273(01)00262-8.

    Article  CAS  PubMed  Google Scholar 

  7. Alemdar, H., and Ersoy, C., Wireless sensor networks for healthcare: a survey. Comput. Netw. 54:2688–2710, 2010. doi:10.1016/j.comnet.2010.05.003.

    Article  Google Scholar 

  8. Zheng, Y.L., Ding, X.R., Poon, C.C.Y., Lo, B.P.L., Zhang, H., Zhou, X.L., Yang, G.Z., Zhao, N., Zhang, Y.T., Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61:1538–1554, 2014. doi:10.1109/TBME.2014.2309951.

    Article  PubMed  Google Scholar 

  9. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I., Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 2: 599–616, 2009. doi:10.1016/j.future.2008.12.001.

    Article  Google Scholar 

  10. Fortino, G., and Pathan, M., Integration of cloud computing and body sensor networks. Futur. Gener. Comput. Syst. 35:57–61, 2014. doi:10.1016/j.future.2014.02.001.

    Article  Google Scholar 

  11. Javadi, B., Abawajy, J., Buyya, R., Failure-aware resource provisioning for hybrid cloud infrastructure. Parallel Distrib. Comput. 72:1318–1331, 2012. doi:10.1016/j.jpdc.2012.06.012.

    Article  Google Scholar 

  12. Pandey, S., Voorsluys, W., Niu, S., Khandoker, A., Buyya, R., An autonomic cloud environment for hosting ECG data analysis services. Futur. Gener. Comput. Syst. 28:147–154, 2012. doi:10.1016/j.future.2011.04.022.

    Article  Google Scholar 

  13. Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y.: Secure and scalable cloud-based architecture for e-health wireless sensor networks. In: 21st International conference on computer communications and networks. https://hal.archives-ouvertes.fr/hal-00695956 (2012)

  14. Forkan, A., Khalil, I., Tari, Z., CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Futur. Gener. Comput. Syst. 35:114–127, 2014. doi:10.1016/j.future.2013.07.009.

    Article  Google Scholar 

  15. Fortino, G., Parisi, D., Pirrone, V., Fatta, D.G., BodyCloud: A SaaS approach for community body sensor networks. Futur. Gener. Comput. Syst. 35:62–79, 2014. doi:10.1016/j.future.2013.12.015.

    Article  Google Scholar 

  16. Quwaider, M., and Jararweh, Y., Cloudlet-based efficient data collection in wireless body area networks. Simul. Model. Pract. Theory 50:57–71, 2015. doi:10.1016/j.simpat.2014.06.015.

    Article  Google Scholar 

  17. Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y., Healing on the cloud: secure cloud architecture for medical wireless sensor networks. Futur. Gener. Comput. Syst. 55: 266–277, 2016. doi:10.1016/j.future.2015.01.009.

    Article  Google Scholar 

  18. Sanei, S., and Chambers, J.: EEG Signal processing John Wiley & Sons (2007)

  19. Djordjevic, V., Reljin, N., Gerla, V., Lhotska, L., Krajca, V.: Feature extraction and classification of EEG sleep recordings in newborns. In: Proceedings of the 9th IEEE international conference on information technology and applications in biomedicine. doi:10.1109/ITAB.2009.5394439 (2009)

  20. Bedeeuzzaman, M., Farooq, O., Khan, Y.U.: Automatic seizure detection using higher order moments. In: Proceedings of the international conference on recent trends in information telecommunication and computing. doi:10.1109/ITC.2010.29 (2010)

  21. Khan, Y.U., Farooq, O., Sharma, P., Automatic detection of seizure onset in pediatric EEG. Int. J. Embed. Syst. Appl. (IJESA) 2:81–89, 2012. doi:10.5121/ijesa.2012.2309.

    Google Scholar 

  22. Paul, K., Krajca, V., Rothc, Z., Melichar, J., Petrnek, S., Comparison of quantitative EEG characteristics of quiet and active sleep in newborns. Sleep Medicine 4:543–552, 2003. doi:10.1016/j.sleep.2003.08.008.

    Article  PubMed  Google Scholar 

  23. van Putten, M.J., Kind, T., Visser, F., Lagerburg, V., Detecting temporal lobe seizures from scalp EEG recordings: A comparison of various features. Clin. Neurophysiol. 116:2480–2489, 2005. doi:10.1016/j.clinph.2005.06.017.

    Article  PubMed  Google Scholar 

  24. Iasemidis, L.D., Shiau, D.S., Chaovalitwongse, W., Sackellares, J.C., Pardalos, P.M., Principe, J.C., Carney, P.R., Prasad, A., Veeramani, B., Tsakalis, K., Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50:616–627, 2003. doi:10.1109/TBME.2003.810689.

    Article  PubMed  Google Scholar 

  25. Aarabi, A., Grebe, R., Wallois, F., A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin. Neurophysiol. 118:2781–2797, 2007. doi:10.1016/j.clinph.2007.08.012.

    Article  PubMed  Google Scholar 

  26. Gerla, V., Macas, M., Lhotska, L., Djordjevic, V., Krajca, V., Paul, K.: Wards clustering method for distinction between neonatal sleep stages. In: Dssel, O., and Schlegel, W. (Eds.) doi:10.1007/978-3-642-03885-3, Vol. 25, pp. 786–789 (2009)

  27. Niederhauser, J.J., Esteller, R., Echauz, J., Vachtsevanos, G., Litt, B., Detection of seizure precursors from depth-EEG using a sign periodogram transform. IEEE Trans. Biomed. Eng. 51:449–458, 2003. doi:10.1109/TBME.2003.809497.

    Article  Google Scholar 

  28. Ocak, H., Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process. 88:1858–1867, 2008. doi:10.1016/j.sigpro.2008.01.026.

    Article  Google Scholar 

  29. Ubeyli, E.D., Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process. 19:297–308, 2009. doi:10.1016/j.dsp.2008.07.004.

    Article  Google Scholar 

  30. Fakhr, S.M., Torbati, M.M., Hill, M., Hill, C.M., White, P.R., Signal processing techniques applied to human sleep EEG signals - A review. Biomed. Signal Process. Control 10:21–33, 2014. doi:10.1016/j.bspc.2013.12.003.

    Article  Google Scholar 

  31. Ramgopal, S., Souza, S.T., Jackson, M., Kadish, N.E., Fernndez, I.S., Klehma, J., Bosl, W., Reinsberger, C., Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37:291–307, 2014. doi:10.1016/j.yebeh.2014.06.023.

    Article  PubMed  Google Scholar 

  32. Menshawy, E.M., Benharref, A., Serhani, M., An automatic mobile-health based approach for EEG epileptic seizures detection. Expert Syst. Appl. 42:7157–7174, 2015. doi:10.1016/j.eswa.2015.04.068.

    Article  Google Scholar 

  33. Hervas, R., Bravo, J., Fontecha, J., An assistive navigation system based on augmented reality and context awareness for people with mild cognitive impairments. IEEE J. Biomed. Health Inform. 18:368–374, 2014. doi:10.1109/JBHI.2013.2266480.

    Article  PubMed  Google Scholar 

  34. Li, X., Ouyang, G., Richards, D.A., Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77:70–74, 2007. doi:10.1016/j.eplepsyres.2007.08.002.

    Article  PubMed  Google Scholar 

  35. van Drongelen, W., Nayak, S., Frim, D.M., Kohrman, M.H., Towle, V.L., Lee, H.C., et al., Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy. Pediatr. Neurol. 29:207–213, 2003. doi:10.1016/S0887-8994(03)00145-0.

    Article  PubMed  Google Scholar 

  36. Rosso, O.A., Entropy changes in brain function. Int. J. Psychophysiol. 64: 75–80, 2007. doi:10.1016/j.ijpsycho.2006.07.010.

    Article  PubMed  Google Scholar 

  37. Burioka, N., Cornelissen, G., Maegaki, Y., Halberg, F., Kaplanm, D.T., Miyata, M., et al., Approximate entropy of the electroencephalogramin healthy awake subjects and absence epilepsy patients. Clin. EEG Neurosci. 36:188–193, 2005. doi:10.1177/155005940503600309.

    Article  PubMed  Google Scholar 

  38. Chua, K.C., Chandran, V., Acharya, R., Lim, C.M., Analysis of epileptic EEG signals using higher order spectra. J. Med. Eng. Technol. 33:42–50, 2009. doi:10.1080/03091900701559408.

    Article  CAS  PubMed  Google Scholar 

  39. Antonopoulos, C.P., and Voros, N.S., Resource efficient data compression algorithms for demanding, WSN based biomedical applications. J. Biomed. Inform. 59:1–14, 2016. doi:10.1016/j.jbi.2015.10.015.

    Article  PubMed  Google Scholar 

  40. He, J., Xue, Z., Wu, D., Wu, D.O., Wen, Y., CBM: Online Strategies on Cost-Aware buffer management for mobile video streaming. IEEE Trans. Multimedia 16:242–252, 2014. doi:10.1109/TMM.2013.2284894.

    Article  Google Scholar 

  41. Sareen, S., Sood, S.K., Gupta, S.K.: Towards the Design of a Secure Data Outsourcing using Fragmentation and Secret Sharing Scheme. Information Security Journal: A Global Perspective. doi:10.1080/19393555.2015.1134732 (2016)

  42. Riedl, B., Grascher, V., Neubauer, T., A secure e-Health architecture based on the appliance of pseudonymization. J. Softw. 3:23–32, 2008. doi:10.1.1.110.2237.

    Article  Google Scholar 

  43. Stingl, C., and Slamanig, D., Health Records and the Cloud Computing Paradigm from a Privacy Perspective. J. Healthcare Eng. 2:487–508, 2011. doi:10.1260/2040-2295.2.4.487.

    Article  Google Scholar 

  44. Google Maps. https://www.google.co.in/maps (2016)

  45. Jakubowski, J., Kwiatos, K., Chwaleba, A., Osowski, S., Higher order statistics and neural network for tremor recognition. IEEE Trans. Biomed. Eng. 49:152–159, 2002. doi:10.1109/10.979354.

    Article  PubMed  Google Scholar 

  46. Laurent, H., and Doncarli, C., Stationarity index for abrupt changes detection in the time-frequency plane. IEEE Signal Process Lett. 5:43–45, 1998. doi:10.1109/97.659547.

    Article  Google Scholar 

  47. Husar, P., and Henning, G., Bispectrum analysis of visually evoked potentials. IEEE Eng. Med. Biol. Mag. 16:57–63, 1997. doi:10.1109/51.566155.

    Article  CAS  PubMed  Google Scholar 

  48. Nikias, C.L., and Mendel, J.M., Signal processing with higher-order spectra. IEEE Signal Process. Mag. 10:10–37, 1993. doi:10.1109/79.221324.

    Article  Google Scholar 

  49. Andrzejak, R.G., Lehnertz, K., Rieke, C., Mormann, F., David, P., Elger, C.E., Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64:061907, 2001. doi:10.1103/PhysRevE.64.061907.

    Article  CAS  Google Scholar 

  50. Hinich, M.J., Testing for gaussianity and linearity of a stationary time series. Time Ser. Anal. 3:169–176, 1982. doi:10.1111/j.1467-9892.1982.tb00339.x.

    Article  Google Scholar 

  51. Swami, A., Mendel, C.M., Nikias, C.L.: Higher-order spectral analysis (HOSA) toolbox, version 2.0.3 (2000)

  52. He, H., and Thomson, D.J., Canonical bicoherence analysis of dynamic EEG data. J. Comput. Neurosci. 29:23–34, 2010. doi:10.1007/s10827-009-0177-z.

    Article  CAS  PubMed  Google Scholar 

  53. Amazon Cloud Services. http://aws.amazon.com/ec2/instance-types/ (2016)

  54. Bao, A., Kansal, A., Choudhury, R.R., Bahl, P., Chu, D., Wolman, A.: Helping mobile Apps Bootstrap with Fewer users. In: Proceedings of the 14th International Conference on Ubiquitous Computing. doi:10.1145/2370216.2370289 (2012)

  55. Yan, H., Jiang, Y., Zheng, J., Peng, C., Li, Q., A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst. Appl. 30:272–281, 2006. doi:10.1016/j.eswa.2005.07.022.

    Article  Google Scholar 

  56. Bates, D.M., and Watts, D.G.: Nonlinear regression: iterative estimation and linear approximations John Wiley & Sons. doi:10.1002/9780470316757.ch2 (1988)

  57. Ko, M., and Barkana, A., Application of linear regression classification to low-dimensional datasets. Neurocomputing 131:331–335, 2014. doi:10.1016/j.neucom.2013.10.009.

    Article  Google Scholar 

  58. Rousseeuw, P.J., Least median of square regression. Am. Stat. Assoc. 79:871–880, 1984.

    Article  Google Scholar 

  59. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., The WEKA data mining software: an update. ACM SIGKDD Explorations Newsl. 11:10–18, 2009. doi:10.1145/1656274.1656278.

    Article  Google Scholar 

  60. Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32:1084–1093, 2007. doi:10.1016/j.eswa.2006.02.005.

    Article  Google Scholar 

  61. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424, 2001. doi:10.1093/bioinformatics/16.5.412.

    Article  Google Scholar 

Download references

Acknowledgments

The authors heartily thank Dr. Ashok Uppal for his expert advice and in evaluating the accuracy of results proposed by our proposed system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Sareen.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sareen, S., Sood, S.K. & Gupta, S.K. An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks. J Med Syst 40, 226 (2016). https://doi.org/10.1007/s10916-016-0579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0579-1

Keywords

Navigation