Skip to main content
Log in

An ICT-Based Platform to Monitor Protocols in the Healthcare Environment

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Procedures from the healthcare domain involve highly critical actions as they may pose a risk for patients’ life. Therefore, a large effort is devoted to the standardization in clinical praxis and to the control of quality for these protocols in order to minimize hazards. In this line, this work is compelled to provide an ICT-based support to carry out these controls in a simple and effective manner. Using a methodology based on HACCP and taking advantage of Semantic tools, a holistic platform of services for traceability and control of processes has been designed and implemented. The applied paradigm is based on the use of Control Points as singular points to generate traces using observations and measures relevant for the processes considered. Based on those, it is possible to offer services for advanced querying and knowledge inference. The local deployment just requires regular mobile phones or tablets making this solution cost-effective and easily replicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6

Similar content being viewed by others

References

  1. Vincent, C., Taylor-Adams, S., and Stanhope, N., Framework for analysing risk and safety in clinical medicine. BMJ. 316:1154–1157, 1998. doi:10.1136/bmj.316.7138.1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woolf, S., Grol, R., Hutchinson, A., et al., Clinical guidelines: Potential benefits, limitations, and harms of clinical guidelines. BMJ. 318:527–530, 1999. doi:10.1136/bmj.318.7182.527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pierson, M.D., HACCP: principles and applications. Springer Science & Business Media, New York, 2012. doi:10.1007/978-1-4684-8818-0.

    Google Scholar 

  4. Griffith, C., Obee, P., and Cooper, R., The clinical application of hazard analysis critical control points (HACCP). Am. J. Infect. Control. 33:e39, 2005. doi:10.1016/j.ajic.2005.04.037.

    Article  Google Scholar 

  5. Codex Alimentarius Commision, Codex alimentarius. International Food Standards. http://www.codexalimentarius.org/. Accessed 22 August 2016, 2015.

  6. National Advisory Committee on Microbiological Criteria for Foods, Principles of risk assessment for illness caused by foodborne biological agents. J. Food Prot. 61:1071–1074, 1998.

    Google Scholar 

  7. International Organization for Standardization, ISO 8402: 1995: quality management and quality assurance-vocabulary. International Organization for Standardization, 1995 .

  8. Yen, P.Y., and Gorman, P.N., Usability testing of a digital pen and paper system in nursing documentation. In: AMIA Annual Symposium. American Medical Informatics Association, p. 844, 2005.

  9. Alonso-Rorís VM, Santos-Gago JM et al., A telematic based approach towards the normalization of clinical praxis. In the 4rd World Conference on Info Systems and Technologies (WorldCIST’16) pp. 659–668, 2016.

  10. Tomlinson, M., Solomon, W., et al., The use of mobile phones as a data collection tool: a report from a household survey in South Africa. BMC Med. Inform. Decis. Mak. 9:51, 2009. doi:10.1186/1472-6947-9-51.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schobel J, Schickler M et al., Towards process-driven mobile data collection applications: requirements, challenges, lessons learned. International Conference on Web Inf. Sys. and Techn. pp. 371–382, 2014.

  12. Hinman, A.R., Eichwald, J., et al., Integrating child health information systems. Am. J. Public Health. 95:1923–1927, 2005. doi:10.2105/AJPH.2004.051466.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soh, C., Kien, S.S., and Tay-Yap, J., Enterprise resource planning: cultural fits and misfits: is ERP a universal solution? Commun. ACM. 43:47–51, 2000. doi:10.1145/332051.332070.

    Article  Google Scholar 

  14. Pryss R, Langer D et al., Mobile task management for medical ward rounds - the MEDo approach. International Conference on Business Process Management. pp. 43–54, 2012. doi:10.1007/978-3-642-36285-9_6

  15. Quinn, C.C., Clough, S.S., et al., WellDoc mobile diabetes management randomized controlled trial: change in clinical and behavioral outcomes and patient and physician satisfaction. Diabetes Technol. Ther. 10(3):160–168, 2008. doi:10.1089/dia.2008.0283.

    Article  PubMed  Google Scholar 

  16. Davis R, Geiger B et al., Tracking blood products in blood centres using radio frequency identification: a comprehensive assessment. Vox Sang. 97(1):50–60, 2009. doi:10.1111/j.1423–0410.2009.01174.x

  17. Vasquez A, Huerta M et al., Intelligent system for identification of patients in healthcare. World Congress on Medical Physics and Biomedical Engineering, pp. 1449–1452, 2015. doi:10.1007/978-3-319-19387-8_353

  18. Villarreal, V., Hervás, R., and Bravo, J., A systematic review for mobile monitoring solutions in M-Health. J. Med. Syst. 40(9):199, 2016. doi:10.1007/s10916-016-0559-5.

    Article  PubMed  Google Scholar 

  19. Togt, R.V.D., Bakker, P.J.M., and Jaspers, M.W.M., A framework for performance and data quality assessment of Radio Frequency IDentification (RFID) systems in health care settings. J. Biomed. Inform. 44(2):372–383, 2011. doi:10.1016/j.jbi.2010.12.004.

    Article  PubMed  Google Scholar 

  20. Boulos, M.N.K., Brewer, A.C., et al., Mobile medical and health apps: state of the art, concerns, regulatory control and certification. Online J. Public Health Inf., 2014. doi:10.5210/ojphi.v5i3.4814.

  21. Bendavid, Y., Boeck, H., and Philippe, R., RFID-enabled traceability system for consignment and high value products: a case study in the healthcare sector. J. Med. Syst. 36(6):3473–3489, 2012. doi:10.1007/s10916-011-9804-0.

    Article  PubMed  Google Scholar 

  22. Fielding, R.T., Architectural styles and the design of network-based software architectures. University of California, Irvine, 2000.

    Google Scholar 

  23. Berners-Lee, T., Hendler, J., and Lassila, O., The semantic web. Sci. Am. 284(5):28–37, 2001.

    Article  Google Scholar 

  24. Chen, R.C., Huang, Y.H., et al., A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection. Expert Syst. Appl. 39(4):3995–4006, 2012. doi:10.1016/j.eswa.2011.09.061.

    Article  Google Scholar 

  25. Prud’Hommeaux E, Seaborne A , SPARQL query language for RDF. W3C recommendation 15, 2008.

  26. Boullata, J., Overview of the parenteral nutrition use process. J. Parenter. Enter. Nutr. 36:10S–13S, 2012. doi:10.1177/0148607111433624.

    Article  Google Scholar 

  27. Boullata, J., Gilbert, K., Sacks, G., et al., A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. J. Parenter. Enter. Nutr. 38:334–377, 2014. doi:10.1177/0148607114521833.

    Article  Google Scholar 

  28. Soria, B.B., García, M.M., et al., Development of the management for parenteral nutrition traceability in a standard hospital. Farm. Hosp. 39(n06):358–377, 2015. doi:10.7399/fh.2015.39.6.9689.

    Google Scholar 

  29. Günther CW, Verbeek H (2014) XES-standard definition. BPMcenter.org

    Google Scholar 

  30. Rojas, E., Munoz-Gama, J., Sepúlveda, M., and Capurro, D., Process mining in healthcare: A literature review. J. Biomed. Inform. 61:224–236, 2016. doi:10.1016/j.jbi.2016.04.007.

    Article  PubMed  Google Scholar 

  31. Ramos-Merino M, Sabucedo-Álvarez L et al., Extending BPMN model for improving expressiveness and machine-understandability. In the 4rd World Conference on Info Systems and Technologies (WorldCIST’16) pp. 297–306, 2016. doi:10.1007/978-3-319-31232-3_28

Download references

Acknowledgments

This work has been partially funded by the European Regional Development Fund (ERDF), the Government of Spain and the Regional Government of Galicia under the TACTICA and GRC2013-006 projects and by the Instituto de Salud Carlos III by PI13/00464 project, also cofunded by ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Alonso Rorís.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rorís, V.M.A., Gago, J.M.S., Sabucedo, L.Á. et al. An ICT-Based Platform to Monitor Protocols in the Healthcare Environment. J Med Syst 40, 225 (2016). https://doi.org/10.1007/s10916-016-0593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0593-3

Keywords

Navigation