Skip to main content
Log in

IFCM Based Segmentation Method for Liver Ultrasound Images

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this paper we have proposed an iterative Fuzzy C-Mean (IFCM) method which divides the pixels present in the image into a set of clusters. This set of clusters is then used to segment a focal liver lesion from a liver ultrasound image. Advantage of IFCM methods is that n-clusters FCM method may lead to non-uniform distribution of centroids, whereas in IFCM method centroids will always be uniformly distributed. Proposed method is compared with the edge based Active contour Chan-Vese (CV) method, and MAP-MRF method by implementing the methods on MATLAB. Proposed method is also compared with region based active contour region-scalable fitting energy (RSFE) method whose MATLAB code is available in author’s website. Since no comparison is available on a common database, the performance of three methods and the proposed method have been compared on liver ultrasound (US) images available with us. Proposed method gives the best accuracy of 99.8 % as compared to accuracy of 99.46 %, 95.81 % and 90.08 % given by CV, MAP-MRF and RSFE methods respectively. Computation time taken by the proposed segmentation method for segmentation is 14.25 s as compared to 44.71, 41.27 and 49.02 s taken by CV, MAP-MRF and RSFE methods respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Statistics and outlook for liver cancer. http://www.cancerresearchuk.org/about-cancer/type/liver-cancer/treatment/statistics-and-outlook-for-liver-cancer. Accessed Sept 2015

  2. Lee, W.-L., An ensemble-based data fusion approach for characterizing ultrasonic liver tissue. Appl. Soft Comput. 13(8):3683–3692, 2013.

    Article  Google Scholar 

  3. Jeon, J.H., Choi, J.Y., Lee, S., and Ro, Y.M., Multiple ROI selection based focal liver lesion classification in ultrasound images. Expert Syst. Appl. 40(2):450–457, 2013.

    Article  Google Scholar 

  4. Virmani, J., Kumar, V., Kalra, N., and Khandelwal, N., Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound. J. Digit. Imaging. 27(4):520–537, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee, W.-L., Chen, Y.-C., and Hsieh, K.-S., Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans. Med. Imaging. 22(3):382–392, 2003.

    Article  PubMed  Google Scholar 

  6. Mittal, D., Kumar, V., Saxena, S.C., Khandelwal, N., and Kalra, N., Neural network based focal liver lesion diagnosis using ultrasound images. Comput. Med. Imaging Graph. 35(4):315–323, 2011.

    Article  PubMed  Google Scholar 

  7. Gupta, D., Anand, R., and Tyagi, B., A hybrid segmentation method based on Gaussian kernel fuzzy clustering and region based active contour model for ultrasound medical images. Biomed. Signal Process. Control. 16:98–112, 2015.

    Article  Google Scholar 

  8. Xu, J., Chen, K., Yang, X., Wu, D., Zhu, S. Adaptive level set method for segmentation of liver tumors in minimally invasive surgery using ultrasound images. In: Bioinformatics and Biomedical Engineering. ICBBE 2007. The 1st International Conference on, 2007. IEEE, pp. 1091–1094, 2007.

  9. Lee, W.-L., Chen, Y.-C., Chen, Y.-C., and Hsieh, K.-S., Unsupervised segmentation of ultrasonic liver images by multiresolution fractal feature vector. Inf. Sci. 175(3):177–199, 2005. doi:10.1016/j.ins.2005.01.007.

    Article  Google Scholar 

  10. Cvancarova M, Albregtsen F, Brabrand K, Samset E Segmentation of ultrasound images of liver tumors applying snake algorithms and GVF. In: International Congress Series. Elsevier, pp. 218–223, 2005.

  11. Chan, T.F., and Vese, L., Active contours without edges. IEEE Trans. Image Process. 10(2):266–277, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Li, C., Xu, C., Gui, C., Fox, M. D. Level set evolution without re-initialization: a new variational formulation. In: Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on, 2005. IEEE. pp. 430–436, 2005.

  13. Li, C., Kao, C.-Y., Gore, J.C., and Ding, Z., Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10):1940–1949, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caselles, V., Kimmel, R., and Sapiro, G., Geodesic active contours. Int. J. Comput. Vis. 22(1):61–79, 1997.

    Article  Google Scholar 

  15. Li, C., Kao, C.-Y., Gore, J. C., Ding Z Implicit active contours driven by local binary fitting energy. In: Computer Vision and Pattern Recognition. CVPR'07. IEEE Conference on, 2007. IEEE. pp. 1–7, 2007.

  16. Yuan, J., Active contour driven by region-scalable fitting and local Bhattacharyya distance energies for ultrasound image segmentation. IET Image Process. 6(8):1075–1083, 2012.

    Article  Google Scholar 

  17. Yuan, J., Active contour driven by local divergence energies for ultrasound image segmentation. IET Image Process. 7(3):252–259, 2013.

    Article  Google Scholar 

  18. Rastgarpour, M., Shanbehzadeh, J., and Soltanian-Zadeh, H., A hybrid method based on fuzzy clustering and local region-based level set for segmentation of inhomogeneous medical images. J. Med. Syst. 38(8):1–15, 2014.

    Article  Google Scholar 

  19. Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., Thatcher, R., and Silbiger, M., MRI segmentation: methods and applications. Magn. Reson. Imaging. 13(3):343–368, 1995.

    Article  CAS  PubMed  Google Scholar 

  20. Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., and Bezdek, J.C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans. Neural Netw. 3(5):672–682, 1992.

    Article  CAS  PubMed  Google Scholar 

  21. Lao, Z., Shen, D., Liu, D., Jawad, A.F., Melhem, E.R., Launer, L.J., Bryan, R.N., and Davatzikos, C., Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad. Radiol. 15(3):300–313, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ruan, S., Lebonvallet, S., Merabet, A., Constans, J.-M. Tumor segmentation from a multispectral MRI images by using support vector machine classification. In: Biomedical Imaging: From Nano to Macro. ISBI 2007. 4th IEEE International Symposium on, 2007. IEEE. pp. 1236–1239, 2007.

  23. Wang, X., Zhang, W., and Ji, Q., Image object extraction with shape and edge-driven Markov random field model. IET Image Process. 8(7):383–396, 2014.

    Article  Google Scholar 

  24. Ghosh, A., Subudhi, B.N., and Bruzzone, L., Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images. IEEE Trans. Image Process. 22(8):3087–3096, 2013.

    Article  PubMed  Google Scholar 

  25. Wang, Q. HMRF-EM-image: implementation of the hidden markov random field model and its expectation-maximization algorithm. arXiv preprint arXiv:12073510, 2012.

  26. Huang, X., Dong, J., Wang, M. Paper web defection segmentation using Gauss-Markov random field texture features. In: Image Analysis and Signal Processing (IASP). International Conference on, 2011. IEEE. pp. 167–170, 2011.

  27. Lai, J., Ford, J. J., O'Shea, P., Walker, R. Hidden Markov model filter banks for dim target detection from image sequences. In: Digital Image Computing: Techniques and Applications (DICTA), 2008. IEEE. pp. 312–319, 2008.

  28. Wu, J., and Chung, A., A segmentation model using compound Markov random fields based on a boundary model. IEEE Trans. Image Process. 16(1):241–252, 2007.

    Article  PubMed  Google Scholar 

  29. Xie, L., Ugrinovskii, V., and Petersen, I.R., Probabilistic distances between finite-state finite-alphabet hidden Markov models. IEEE Trans. Autom. Control. 50(4):505–511, 2005.

    Article  Google Scholar 

  30. Marroquin, J.L., Santana, E.A., and Botello, S., Hidden Markov measure field models for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(11):1380–1387, 2003.

    Article  Google Scholar 

  31. Xiao, G., Brady, M., Noble, J.A., and Zhang, Y., Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans. Med. Imaging. 21(1):48–57, 2002.

    Article  PubMed  Google Scholar 

  32. Descombes, X., Morris, R.D., Zerubia, J., and Berthod, M., Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood. IEEE Trans. Image Process. 8(7):954–963, 1999.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, X., Langer, D.L., Haider, M., Yang, Y., Wernick, M.N., and Yetik, İ.Ş., Prostate cancer segmentation with simultaneous estimation of Markov random field parameters and class. IEEE Trans. Med. Imaging. 28(6):906–915, 2009.

    Article  PubMed  Google Scholar 

  34. Panjwani, D.K., and Healey, G., Markov random field models for unsupervised segmentation of textured color images. IEEE Trans. Pattern Anal. Mach. Intell. 17(10):939–954, 1995.

    Article  Google Scholar 

  35. Salzenstein, F., and Pieczynski, W., Parameter estimation in hidden fuzzy Markov random fields and image segmentation. Graph. Model. Image Process. 59(4):205–220, 1997.

    Article  Google Scholar 

  36. Cai, W., Chen, S., and Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3):825–838, 2007.

    Article  Google Scholar 

  37. Sikka, K., Sinha, N., Singh, P.K., and Mishra, A.K., A fully automated algorithm under modified FCM framework for improved brain MR image segmentation. Magn. Reson. Imaging. 27(7):994–1004, 2009.

    Article  PubMed  Google Scholar 

  38. Chatzis, S.P., and Varvarigou, T., A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 16(5):1351–1361, 2008.

    Article  Google Scholar 

  39. Jaffar, M. A., Naveed, N., Ahmed, B., Hussain, A., Mirza, A. M. Fuzzy C-means clustering with spatial information for color image segmentation. In: Electrical Engineering. ICEE'09. Third International Conference on, 2009. IEEE. pp. 1–6, 2009.

  40. Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., and Chen, T.-J., Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30(1):9–15, 2006.

    Article  PubMed  Google Scholar 

  41. Xia, Y., Wang, T., Zhao, R., and Zhang, Y., Image segmentation by clustering of spatial patterns. Pattern Recogn. Lett. 28(12):1548–1555, 2007.

    Article  Google Scholar 

  42. He, L., and Greenshields, I.R., An MRF spatial fuzzy clustering method for fMRI SPMs. Biomed. Signal Process. Control. 3(4):327–333, 2008.

    Article  Google Scholar 

  43. Wang, J., Kong, J., Lu, Y., Qi, M., and Zhang, B., A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput. Med. Imaging Graph. 32(8):685–698, 2008.

    Article  PubMed  Google Scholar 

  44. Chen, S., and Zhang, D., Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4):1907–1916, 2004.

    Article  PubMed  Google Scholar 

  45. Gong, M., Liang, Y., Shi, J., Ma, W., and Ma, J., Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2):573–584, 2013.

    Article  PubMed  Google Scholar 

  46. Zhang, D.-Q., and Chen, S.-C., A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med. 32(1):37–50, 2004.

    Article  PubMed  Google Scholar 

  47. Kim, D.-W., Lee, K.Y., Lee, D., and Lee, K.H., Evaluation of the performance of clustering algorithms in kernel-induced feature space. Pattern Recogn. 38(4):607–611, 2005.

    Article  Google Scholar 

  48. Yang, M.-S., and Tsai, H.-S., A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29(12):1713–1725, 2008.

    Article  Google Scholar 

  49. Kawa, J., Pietka, E. Kernelized fuzzy c-means method in fast segmentation of demyelination plaques in multiple sclerosis. In: Engineering in Medicine and Biology Society. EMBS 2007. 29th Annual International Conference of the IEEE, 2007. IEEE. pp. 5616–5619, 2007.

  50. Liao, L., Lin, T., and Li, B., MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach. Pattern Recogn. Lett. 29(10):1580–1588, 2008.

    Article  Google Scholar 

  51. Graves, D., and Pedrycz, W., Performance of kernel-based fuzzy clustering. Electron. Lett. 43(25):1445–1446, 2007.

    Article  Google Scholar 

  52. Chen, W., Giger, M.L., and Bick, U., A fuzzy c-means (fcm)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced mr images 1. Acad. Radiol. 13(1):63–72, 2006.

    Article  PubMed  Google Scholar 

  53. Yu, Y., and Acton, S.T., Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11):1260–1270, 2002.

    Article  PubMed  Google Scholar 

  54. Fernandez, S. A. Detail Preserving Anosotropic Diffusion for Speckle Filtering (DPAD). Mathworks. http://in.mathworks.com/matlabcentral/fileexchange/36906-detail-preserving-anosotropic-diffusion-for-speckle-filtering--dpad-. Accessed Dec 2015, 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Jain.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Kumar, V. IFCM Based Segmentation Method for Liver Ultrasound Images. J Med Syst 40, 249 (2016). https://doi.org/10.1007/s10916-016-0623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0623-1

Keywords

Navigation