Skip to main content

Advertisement

Log in

Superharmonic Imaging for Medical Ultrasound: a Review

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Ultrasound with harmonics has emerged as an exceptional alternative to competitively low resolution fundamental ultrasound imaging. The use of second harmonic is already a trend now but higher harmonics are also being seen as even better option due to its improved resolution. The resolution improved with frequency but achieves penetration of reduced energy. The cumulative addition of higher harmonics during propagation yields higher harmonics giving better resolution with adequate penetration. This paper summarizes the progress of such similar decade old harmonic ultrasound imaging technique i.e., superharmonic imaging (SHI) geared towards medical field. It comprises of harmonics higher than second harmonic preferably up to 5th harmonic. We conclude that SHI can be an advanced ultrasound imaging with comprehensive high resolution and adequate penetration depth on sole and coded modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whittingham, T., Tissue harmonic imaging. Eur. Radiol. 9(3):S323–S326, 1999.

    Article  PubMed  Google Scholar 

  2. Ward, B., Baker, A. C., and Humphrey, V. F., Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound. J. Acoust. Soc. Am. 101(1):143–154, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Starritt, H. C., Duck, F. A., Hawkins, A. J., and Humphrey, V. F., The development of harmonic distortion in pulsed finite-amplitude ultrasound passing through liver. Phys. Med. Biol. 31(12):1401–1409, 1986.

    Article  CAS  PubMed  Google Scholar 

  4. Starritt, H., Perkins, M., Duck, F., and Humphrey, V., Evidence for ultrasonic finite-amplitude distortion in muscle using medical equipment. J. Acoust. Soc. Am. 77(1):302–306, 1985.

    Article  CAS  PubMed  Google Scholar 

  5. Muir, T. G., Nonlinear effects in acoustic imaging. Acoust. Imaging 9:93–109, 1980.

    Article  Google Scholar 

  6. Duck, F. A., Nonlinear acoustics in diagnostic ultrasound. Ultrasound Med. Biol. 28(1):1–18, 2002.

    Article  PubMed  Google Scholar 

  7. Averkiou, M., Tissue harmonic imaging. Ultrasonics Symposium, 2000 IEEE, 2, 1563-1572, 2000.

  8. Shen, C., and Li, P., Harmonic leakage and image quality degradation in tissue harmonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(3):728–736, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Bouakaz, A., Frigstad, S., ten Cate, F. J., and de Jong, N., Super harmonic imaging: A new imaging technique for improved contrast detection. Ultrasound Med. Biol. 28(1):59–68, 2002.

    Article  PubMed  Google Scholar 

  10. Bouakaz, A., and de Jong, N., Native tissue imaging at superharmonic frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(5):496–506, 2003.

    Article  Google Scholar 

  11. Bouakaz, A., Krenning, B. J., Vletter, W. B., ten Cate, F. J., and Jong, N. D., Contrast superharmonic imaging: A feasibility study. Ultrasound Med. Biol. 29(4):547–553, 2003.

    Article  PubMed  Google Scholar 

  12. Ma, Q., Zhang, D., Gong, X., and Ma, Y., Investigation of superharmonic sound propagation and imaging in biological tissues in vitro. J. Acoust. Soc. Am. 119(4):2518–2523, 2006.

    Article  PubMed  Google Scholar 

  13. van Neer, P. L. M. J., Danilouchkine, M. G., Verweij, M. D., Demi, L., Voormolen, M. M., van der Steen, A. F. W., and de Jong, N., Comparison of fundamental, second harmonic, and superharmonic imaging: A simulation study. J. Acoust. Soc. Am. 130(5):3148–3157, 2011.

    Article  PubMed  Google Scholar 

  14. Londhe, N. D., and Anand, R. S., Investigation of ultrasonic shock wave propagation and superharmonic field generation in human soft tissues. Int. J. Math. Model. Numer. Optimisation 1(4):316–329, 2010.

    Article  Google Scholar 

  15. Ma, J., Martin, K. H., Li, Y., Dayton, P. A., Shung, K. K., Zhou, Q., and Jiang, X., Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Phys. Med. Biol. 60(9):3441–3457, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bouakaz, A., Ten Cate, F. J., and de Jong, N., A new ultrasonic transducer for improved contrast nonlinear imaging. Phys. Med. Biol. 49(16):3515–3525, 2004.

    Article  PubMed  Google Scholar 

  17. Ma, J., Jiang, X., Martin, K. H., Dayton, P. A., Li, Y., Zhou, Q., Dual frequency transducers for intravascular ultrasound super-harmonic imaging and acoustic angiography. Ultrasonics Symposium (IUS), 2014 I.E. International, 675-678 (3-6 Sept. 2014).

  18. Danilouchkine, M. G., van Neer, P. L. M. J., Matte, G. M., Voormolen, M. M., Verweij, M. D. and de Jong, N., Superharmonic imaging based on chirps. IEEE Ultrasonics Symp. 2195-2198, 2010.

  19. Londhe, N. D., and Anand, R. S., Coded Tissue Superharmonic Imaging: An analytical study. J. Med. Ultrasound 20(2):101–108, 2012.

    Article  Google Scholar 

  20. Londhe, N. D., and Anand, R. S., Numerical Investigation of Superharmonic Imaging Using Chirp Excitation. J. Med. Ultrasound 19(3):81–86, 2011.

    Article  Google Scholar 

  21. Hossack, J. A., Mauchamp, P., and Ratsimandresy, L., A high bandwidth transducer optimized for harmonic imaging. In: Proc. IEEE Ultrason. Symp. 2, 1021–1024, 2000.

  22. Akiyama, I., Saito, S., and Ohya, A., Development of an ultra-broadband ultrasonic imaging system: Prototype mechanical sector device. J. Med. Ultrasound 33(2):71–76, 2006.

    Article  Google Scholar 

  23. Ferin, G., Legros, M., Felix, N., Notard, C., and Ratsimandresy, L., 3F-6 Ultra-wide bandwidth array for new imaging modalities. In: Proc. IEEE Ultrasonic Symp. New York, NY, 204–207, 2007.

  24. Zhou, S., Reynolds, P., and Hossack, J. A., Improving the performance of capacitive micromachined ultrasound transducers using modified membrane and support structures. In: Proc. IEEE Ultrasonic Symp. Rotterdam, The Netherlands, 4,1925–1928, 2005.

  25. van Neer, P. L. M. J., Matte, G., Danilouchkine, M. G., Prins, C., van den Adel, F., and de Jong, N., Super-harmonic imaging: development of an interleaved phased-array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(2):455–468, 2010.

    Article  PubMed  Google Scholar 

  26. Forsberg, F., Shi, W., Jadidian, B., and Winder, A., Design and acoustic characterization of a multi-frequency harmonic array for nonlinear contrast imaging. Ultrasonics Symposium, 2001 IEEE, 2, 1721-1724, 2001

  27. Forsberg, F., Shi, W., Jadidian, B., and Winder, A., Multi-frequency harmonic arrays: Initial experience with a novel transducer concept for nonlinear contrast imaging. Ultrasonics 43(2):79–85, 2004.

    Article  PubMed  Google Scholar 

  28. van Neer, P. L. M. J., Danilouchkine, M. G., Matte, G. M., van der Steen, A. F. W., and de Jong, N., Dual-pulse frequency compounded superharmonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11):2316–2324, 2011.

    Article  PubMed  Google Scholar 

  29. Masoy, S. E., Standal, O., Nasholm, P., and Johansen, T. F., SURF imaging: In vivo demonstration of an ultrasound contrast agent detection technique. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(5):1112–1121, 2008.

    Article  CAS  PubMed  Google Scholar 

  30. Ma, Q., Ma, Y., Gong, X., and Zhang, D., Improvement of tissue harmonic imaging using the pulse-inversion technique. Ultrasound Med. Biol. 31(7):889–894, 2005.

    Article  PubMed  Google Scholar 

  31. Verweij, M. D., Demi, L., van Neer, P. L. M. J., Danilouchkine, M. G., de Jong, N., and van Dongen, K. W. A., A dual pulse technique for improving the point spread function of superharmonic imaging systems. J. Acoust. Soc. Am. 129(4):2611, 2011.

    Article  Google Scholar 

  32. Danilouchkine, M. G., van Neer, P. L. M. J., Verweij, M. D., Matte, G. M., Vletter, W. B., van der Steen, A. F. W., and de Jong, N., Single pulse frequency compounding protocol for superharmonic imaging. Phys. Med. Biol. 58(14):4791–4805, 2013.

    Article  CAS  PubMed  Google Scholar 

  33. Londhe, N. D., and Anand, R. S., Numerical investigation of non–linear propagation of amplitude–modulated ultrasound pulses in human soft tissues and superharmonic beam optimization. Int. J. Biomed. Eng. Technol. 8(1):82–98, 2012.

    Article  Google Scholar 

  34. Matte, G., Van Neer, P., Danilouchkine, M., Huijssen, J., Verweij, M., and De Jong, N., Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(3):533–546, 2011.

    Article  PubMed  Google Scholar 

  35. Ma, J., Martin, K. H., Dayton, P. A., and Xiaoning, J., A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5):870–880, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Muir, T. G., and Carstensen, E. L., Prediction of nonlinear acoustic effects at biomedical frequencies and intensities. Ultrasound Med. Biol. 6(4):345–357, 1980.

    Article  CAS  PubMed  Google Scholar 

  37. Baker, A. C., Nonlinear pressure fields due to focused circular apertures. J. Acoust. Soc. Am. 91(2):713–717, 1992.

    Article  Google Scholar 

  38. Baker, A. C., Berg, A. M., and Tjotta, J. N., The nonlinear pressure field of plane, rectangular apertures: Experimental and theoretical results. J. Acoust. Soc. Am. 97(6):3510–3517, 1997.

    Article  Google Scholar 

  39. Baker, A. C., and Humphrey, V. F., Distortion and high frequency generation due to nonlinear propagation of short pulses from a plane circular piston. J. Acoust. Soc. Am. 92(3):1699–1705, 1992.

    Article  Google Scholar 

  40. Douglas Mast, T., Two- and three-dimensional simulations of ultrasonic propagation through human breast tissue. Acoust. Res. Lett. Online 3(2):53–58, 2002.

    Article  Google Scholar 

  41. Douglas Mast, T., Hinkelman, L. M., Orr, M. J., Sparrow, V. W., and Waag, R. C., Simulation of ultrasonic pulse propagation through the abdominal wall. J. Acoust. Soc. Am. 102(2):1177–1190, 1997.

    Article  Google Scholar 

  42. Desser, T. S., Jeffrey, R. B., Lane, M. J., and Ralls, P. W., Pictorial essay: Tissue harmonic imaging: Utility in abdominal and pelvic sonography. J. Clin. Ultrasound 27(3):135–142, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. Wallace, K. D., Holland, M. R., and Mille, J. G., Improved description of shock wave evolution in media with frequency power law dependent attenuation. J. Acoust. Soc. Am. 109(5):2263–2265, 2001.

    Article  CAS  PubMed  Google Scholar 

  44. Szabo, T. L., Diagnostic Ultrasound Imaging. Elsevier, Burlington, 2004.

    Google Scholar 

  45. Hamilton, M. F., and Blackstock, D. T., Nonlinear acoustics. Academic, San Diego, 1998.

    Google Scholar 

  46. Tavakkoli, J., Cathignol, D., Souchon, R., and Sapozhnikov, O. A., Modeling of pulsed finite-amplitude focused sound beams in time domain. J. Acoust. Soc. Am. 104(4):2061–2072, 1998.

    Article  CAS  PubMed  Google Scholar 

  47. Yuldashev, P. V., and Khokhlova, V. A., Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays. Acoust. Phys. 57(3):334–343, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cohen, G., and Joly, P., Construction and Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Non-homogeneous Media. SIAM J. Numer. Anal. 33(4):1266–1302, 1996.

    Article  Google Scholar 

  49. Huijssen, J., and Verweij, M. D., An Iterative Method for the Computation of Nonlinear Wide-Angle Pulsed Acoustic Fields of Medical Diagnostic Transducers. J. Acoust. Soc. Am. 127(1):33–44, 2010.

    Article  CAS  PubMed  Google Scholar 

  50. Libertario, D., Verweij, M. D., and van Dongen, K. W. A., Modeling three-dimensional nonlinear acoustic wave fields in media with spatially varying coefficient of nonlinearity, attenuation and speed of sound. Ultrasonics Symposium (IUS), 2012 I.E. International. 519-522, 2012

  51. Dirkse, B., finite element method applied to the one-dimensional westervelt equation. 2014.

  52. Pasovic, M., Donilouchkine, M., van der Steen, A., Basset, O., de Jong, N., and Cachard, C. Extended angular spectrum method for calculation of higher harmonics. 10ème CongrèsFrançaisd’Acoustique. 2010.

  53. Burgers, J. M., A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1:171–199, 1948.

    Article  Google Scholar 

  54. Blackstock, D. T., Connection between the Fay and Fubini solutions for plane sound waves of finite amplitudes. J. Acoust. Soc. Am. 39(6):1019–1026, 1966.

    Article  Google Scholar 

  55. Lee, Y. S., and Hamilton, M. F., Time-domain modeling of pulsed finite amplitude sound beams. J. Acoust. Soc. Am. 97(2):906–917, 1995.

    Article  Google Scholar 

  56. Schiffner, M., Mleczko, M., Schmitz, G., Evaluation of an analytical solution to the Burgers equation based on Volterra series. Ultrasonics Symposium (IUS), 2009 I.E. International, 1-4(20-23 Sept. 2009).

  57. Jensen, J. A., Fox, P. D., Wilhjelm, J., and Taylor, L. K., Simulation of non-linear ultrasound fields. In Proc. IEEE Ultrason. Symp., 2, 1733–1736, 2002.

  58. Zemp, R. J., Tavakkoli, J., and Cobbold, R. S. C., Modeling of nonlinear ultrasound propagation in tissue from array transducers. J. Acoust. Soc. Am. 113(1):139–152, 2003.

    Article  PubMed  Google Scholar 

  59. Rozanova-Pierrat, A., Mathematical analysis of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. 2006.

  60. Kuznetsov, V. P., Equations of nonlinear Acoustics. Sov. Phys. Acoust. 16(4):467–470, 1971.

    Google Scholar 

  61. Humphrey, V. F., Non- propagation for linear medical imaging. WCU 2003:73–80, 2003.

    Google Scholar 

  62. Tjotta, J. N., Tjotta, S., and Vefring, E. H., Effects of focusing on the nonlinear interaction between two collinear finite amplitude sound beams. J. Acoust. Soc. Am. 89(3):1017–1027, 1991.

    Article  Google Scholar 

  63. Soneson, J. E., A parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams. J. Acoust. Soc. Am. 131(6):EL481–EL485, 2012.

    Article  PubMed  Google Scholar 

  64. Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A., and Sapozhnikov, O. A., Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. J. Acoust. Soc. Am. 124(4):2406–2420, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Londhe, N. D., and Anand, R. S., Numerical Parametric Study of Superharmonic Field Properties in Nonlinear Ultrasound Wave Propagation in Human Soft Tissues. Acta Acustica United Acustica 98(1):179–187, 2012.

    Article  Google Scholar 

  66. Misaridis, T., and Jensen, J. A., Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2):177–191, 2005.

    Article  PubMed  Google Scholar 

  67. Misaridis, T., and Jensen, J. A., Use of modulated excitation signals in medical ultrasound. Part II: Design and performance for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2):192–207, 2005.

    Article  PubMed  Google Scholar 

  68. Song, J., Kim, S., Sohn, H., Song, T., and Yoo, Y. M., Coded excitation for ultrasound tissue harmonic imaging. Ultrasonics 50(6):613–619, 2010.

    Article  PubMed  Google Scholar 

  69. Misaridis, T., Ultrasound imaging using coded excitations. PhD Thesis, The Technical University of Denmark, 2001.

  70. Doerry, A. W., Generating nonlinear FM chirp waveforms for radar. Sandia Report SAND2006-5856, Unlimited Release, 2006.

  71. Xia, X.-y. et al., Robust minimun variance beamforming applied to ultrasound imaging in the presence of phase aberration. Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Symposium on. IEEE, 2014.

  72. Avanji, S. A. I., Far, A. M., Asl, B. M., Investigation of the effects of transducer Parameters on adaptive MV beamformers in medical ultrasound applications. In: Electrical Engineering (ICEE), 21st Iranian Conference, pp. 1-6, 2013

  73. Chen, J., Yiu, B., So, H. K. H., & Yu, A. C., Real-time GPU-based adaptive beamformer for high quality ultrasound imaging. In: Ultrasonics Symposium (IUS), IEEE International (pp. 474-477), 2011.

  74. Qin, Y., Wang, Z., Ingram, P., Li, Q., and Witte, R. S., Optimizing frequency and pulse shape for ultrasound current source density imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(10):2149–2155, 2012.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasjit S. Suri.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londhe, N.D., Suri, J.S. Superharmonic Imaging for Medical Ultrasound: a Review. J Med Syst 40, 279 (2016). https://doi.org/10.1007/s10916-016-0635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0635-x

Keyword

Navigation