Skip to main content

Advertisement

Log in

An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Public healthcare has been paid an increasing attention given the exponential growth human population and medical expenses. It is well known that an effective health monitoring system can detect abnormalities of health conditions in time and make diagnoses according to the gleaned data. As a vital approach to diagnose heart diseases, ECG monitoring is widely studied and applied. However, nearly all existing portable ECG monitoring systems cannot work without a mobile application, which is responsible for data collection and display. In this paper, we propose a new method for ECG monitoring based on Internet-of-Things (IoT) techniques. ECG data are gathered using a wearable monitoring node and are transmitted directly to the IoT cloud using Wi-Fi. Both the HTTP and MQTT protocols are employed in the IoT cloud in order to provide visual and timely ECG data to users. Nearly all smart terminals with a web browser can acquire ECG data conveniently, which has greatly alleviated the cross-platform issue. Experiments are carried out on healthy volunteers in order to verify the reliability of the entire system. Experimental results reveal that the proposed system is reliable in collecting and displaying real-time ECG data, which can aid in the primary diagnosis of certain heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ageing, In: World Health Organization. http://www.who.int/topics/ageing/en/, 2016.

  2. Banerjee, A., and Gupta, S., Analysis of smart mobile applications for healthcare under dynamic context changes. IEEE Trans. Mob. Comput. 14:904–919, 2015. doi:10.1109/tmc.2014.2334606.

    Article  Google Scholar 

  3. Zhang, Y., and et al., Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. Accepted by IEEE Systems Journal. doi:10.1109/jsyst.2015.2460747, 2015.

  4. Zhang, Y., Chen, M., Huang, D., and et al., iDoctor: Hersonalized and professionalized medical recommendations based on hybrid matrix factorization. Fut. Gener. Comput. Syst. 66:30–35, 2017. doi:10.1016/j.future.2015.12.001.

    Article  Google Scholar 

  5. Abadi, M., Subramanian, R., Kia, S., and et al., DECAF: MEG-based multimodal database for decoding affective physiological responses. IEEE Trans. Affect. Comput. 6:209–222, 2015. doi:10.1109/taffc.2015.2392932.

    Article  Google Scholar 

  6. Kim, H., Kim, S., Van Helleputte, N., and et al., A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circ. Syst. 8:257–267, 2014. doi:10.1109/tbcas.2013.2260159.

    Article  Google Scholar 

  7. Tseng, C., Coordinator traffic diffusion for data-intensive Zigbee transmission in real-time electrocardiography monitoring. IEEE Trans. Biomed. Eng. 60:3340–3346, 2013. doi:10.1109/tbme.2013.2266373.

    Article  PubMed  Google Scholar 

  8. Miao, F., Cheng, Y., He, Y., and et al., A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors 15:11465–11484, 2015. doi:10.3390/s150511465.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tseng, K., Lin, B., Liao, L., and et al., Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Syst. J. 8:900–906, 2014. doi:10.1109/jsyst.2013.2260620.

    Article  Google Scholar 

  10. Friedman, R., Kogan, A., and Krivolapov, Y., On power and throughput tradeoffs of WiFi and Bluetooth in smartphones. IEEE Trans. Mob. Comput. 12:1363–1376, 2013. doi:10.1109/tmc.2012.117.

    Article  Google Scholar 

  11. Shneiderman, B., and Plaisant, C., Sharpening analytic focus to cope with big data volume and variety. IEEE Comput. Graph. Appl. 35:10–14, 2015. doi:10.1109/mcg.2015.64.

    Article  PubMed  Google Scholar 

  12. Zhang, Y., Chen, M., Mao, S., and et al., CAP: Community activity prediction based on big data analysis. IEEE Netw. 28:52–57, 2014. doi:10.1109/mnet.2014.6863132.

    Article  Google Scholar 

  13. Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., and et al., Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61:832–840, 2014. doi:10.1109/tbme.2013.2290800.

    Article  PubMed  Google Scholar 

  14. Sharma, H., and Sharma, K., An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions. Comput. Biol. Med. 77:116–124, 2016. doi:10.1016/j.compbiomed.2016.08.012.

    Article  PubMed  Google Scholar 

  15. AD8283 Datasheet(PDF) - Analog Devices. In: Alldatasheet.com. http://www.alldatasheet.com/datasheet-pdf/pdf/418481/AD/AD8283.html, 2016.

  16. Buenda̱-Fuentes, F., Arnau-Vives, M., Arnau-Vives, A., and et al., High-bandpass filters in electrocardiography: Source of error in the interpretation of the ST segment. ISRN Cardiol. 2012:1–10, 2012. doi:10.5402/2012/706217.

    Google Scholar 

  17. STM32F103RC Datasheet(PDF) - STMicroelectronics. In: Alldatasheet.com. http://www.alldatasheet.com/datasheet-pdf/pdf/231959/STMICROELECTRONICS/STM32F103RC.html, 2016.

  18. Al-Fuqaha, A., Guizani, M., Mohammadi, M., and et al., Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17:2347–2376, 2015. doi:10.1109/comst.2015.2444095.

    Article  Google Scholar 

  19. Phan, T., et al., Cloud databases for Internet-of-things data. In: Proceedings IEEE 2014 International Conference on Internet of Things (iThings), pp. 117–124. Taipei, 2014.

  20. Wang, Y., and et al., Design and evaluation of a novel wireless reconstructed 3-lead ECG monitoring system. In: Proceedings IEEE 2013 Biomedical Circuits and Systems Conference (BioCAS), pp. 362–365, Rotterdam. 2013.

  21. Gertsch, M., The Normal ECG and its (Normal) variants. In: The ECG Manual, pp. 17–36. London: Springer, 2009.

  22. ECGlibrary.com: Normal adult 12-lead ECG. In: Ecglibrary.com. http://www.ecglibrary.com/norm.php, 2016.

  23. Palattella, M., Dohler, M., Grieco, A., and et al., Internet of Things in the 5G era: Enablers, architecture, and business models. IEEE J. Select. Areas Commun. 34:510–527, 2016. doi:10.1109/jsac.2016.2525418.

    Article  Google Scholar 

  24. Xiong, X., Zheng, K., Xu, R., and et al., Low power wide area machine-to-machine networks: Key techniques and prototype. IEEE Commun. Mag. 53:64–71, 2015. doi:10.1109/mcom.2015.7263374.

    Article  Google Scholar 

  25. Lei, L., Kuang, Y., Cheng, N., and et al., Delay-optimal dynamic mode selection and resource allocation in device-to-device communications - part II: Practical algorithm. IEEE Trans. Veh. Technol. 65:3491–3505, 2016. doi:10.1109/tvt.2015.2444791.

    Article  Google Scholar 

  26. Hou, L., Zhao, S., Zheng, K., et al., Internet of Things cloud: architecture and implementation. Accepted by IEEE Communications Magazine. arXiv:1609.07712, 2016.

  27. Zheng, K., Yang, Z., Zhang, K., and et al., Big data-driven optimization for mobile networks toward 5G. IEEE Netw. 30:44–51, 2016. doi:10.1109/mnet.2016.7389830.

    Article  Google Scholar 

  28. He, S., Chen, J., and et al., Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans. Mob. Comput. 13:1268–1282, 2014. doi:10.1109/tmc.2013.129.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National High-Tech R&D Program (863 Program 2015AA01A705), the China Natural Science Funding under the grant 61331009, the National Key Technology R&D Program of China under the grant 2015ZX03002009-004, the Fundamental Research Funds for the Central Universities under the grant 2014ZD03-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Zheng.

Additional information

This article is part of the Topical Collection on Mobile & Wireless Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhou, Q., Lei, L. et al. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare. J Med Syst 40, 286 (2016). https://doi.org/10.1007/s10916-016-0644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0644-9

Keywords

Navigation