Skip to main content
Log in

Use of Biotechnology Devices to Analyse Fatigue Process in Swimming Training

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aim of the present research was to analyze the acute psycho-physiological response during a high intensity interval training (HIIT) session of trained swimmers. We analyzed blood lactate concentration, heart rate, heart rate variability (HRV), arms isometric strength, rating of perceived exertion (RPE) and cortical arousal before and after a HIIT session in 14 trained swimmers (16.2 ± 2.6 years 169.1 ± 10.2 cm 61.3 ± 9.9 kg). HIIT session consisted in: 4 × 10 m tethered swimming resting 90 s between sets, 3 min rest, 16 × 25 m maximum speed swimming resting 30 s between sets. Blood lactate concentration, cortical arousal, and rating of perceived exertion significantly increased (p < 0.05) after HIIT. HRV parameters significantly decreased after HIIT, showing an increase in sympathetic nervous system modulation. Results obtained showed the high impact of HIIT sessions on the swimmer’s organism, which may be the cause of adaptation in this low volume training sessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Clemente-Suárez, V.J., Fernandes, R.J., Arroyo-Toledo, J.J., Figueiredo, P., González-Ravé, J.M., and Vilas-Boas, J.P., Autonomic adaptation after traditional and reverse swimming training periodizations. Act Physiol Hungarica. 102(1):105–103, 2015.

    Article  Google Scholar 

  2. Arroyo-Toledo, J., Clemente-Suárez, V., Gonzalez, J., Ramos, D., and Sortwell, D., Comparison between traditional and reverse periodization: Swimming performance and specific strength values. Int J Swim Kin. 2(1):87–96, 2013.

    Google Scholar 

  3. Gibala, M., Little, J.P., Van Essen, M., Wilkin, G.P., Burgomaster, K.A., Safdar, A., Raha, S., and Tarnopolsky, M., Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J Physio. 575(3):901–911, 2006.

    Article  CAS  Google Scholar 

  4. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., and Spiegelman, B.M., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 98(1):115–124, 1999. doi:10.1016/S0092-8674(00)80611-X.

    Article  CAS  PubMed  Google Scholar 

  5. Egan, B., Carson, B.P., Garcia-Roves, P.M., Chibalin, A.V., Sarsfield, F.M., Barron, N., McCaffrey, N., Moyna, N.M., Zierath, J.R., and O’Gorman, D.J., Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 588:1779–1790, 2010. doi:10.1113/jphysiol.2010.188011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terada, S., Tabatat, I., and Higuchi, M., (2004). Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jape J Physiol. 54(1):42–52, 2004.

    Google Scholar 

  7. Terada, S., Yokozeki, T., Kawanaka, K., Ogawa, K., Higuchi, M., Ezaki, O., and Tabata, I., (2001). Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol. 90:2019–2024, 2001.

    CAS  PubMed  Google Scholar 

  8. Christensen E. H, Hedman R, Saltin B. Intermittent and continuous running. Ac Physiol Scan. 50: 269–286, (1960)

  9. Tabata, I., Irisawa, K., Kouzaki, M., et al., Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc. 29:390–395, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Warbuton, D., McKenzie, D., Haykowsky, M., Taylor, A., Shoemaker, P., Ignaszewski, A., and Chan, S., Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 95:1080–1084, 2005.

    Article  Google Scholar 

  11. Costill, D.L., Thomas, R., Robergs, R.A., Pascoe, D., Lambert, C., Barr, S., and Fink, W.J., Adaptations to swimming training: Influence of training volume. Med Sci Sports Exerc. 23:371–377, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. Seiler, S., What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Per. 5:276–291, 2010. doi:10.1111/j.1600-0838.2010.01117.x.

    Google Scholar 

  13. Billat, V.L., Bocquet, V., Slawinski, J., et al., Intermittent running at vVO2max allows to sustain a longer time at VO2max that severe continuous submaximal run. Med. Sci. Sports Exerc. 31(5):Supplement abstract):275, 1999.

    Google Scholar 

  14. Yeater, R.A., Bruce Martin, R., White, M.K., and Gilson, K.H., Tethered swimming forces in the crawl, breast and back strokes and their relationship to competitive performance. J Biomech. 14(8):527–537, 1981.

    Article  CAS  PubMed  Google Scholar 

  15. Trapp, G., Boutcher, Y.N., and Boutcher, S.H., Oxygen uptake response to high intensity intermittent cycle exercise. Med. Sci. Sports Exerc. 36(5):Suppl 1900, 2004.

    Google Scholar 

  16. Borg, G., Perceived exertion as an indicator of somatic stress. Scan J Rehab Med. 2(2):92–98, 1970.

    CAS  Google Scholar 

  17. Clemente Suárez, V.J., and Robles Pérez, J.J., Respuesta orgánica en una simulación de combate. Sanid Mil. 68(2):97–100, 2012.

    Article  Google Scholar 

  18. Clemente Suárez, V.J., Martínez, A., Muñoz, V.E., and González Ravé, J.M., Fatiga del sistema nervioso después de una prueba incremental de consumo máximo de oxígeno. Arch med deporte. 137:174–180, 2010.

    Google Scholar 

  19. Weston, A., Myburgh, K., Lindsay, F., et al., Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appli Physiol. 75:7–13, 1997.

    Article  CAS  Google Scholar 

  20. Laursen, P., Blanchard, M., and Jenkins, D., Acute high-intensity interval training improves Tvent and peak power output in highly trained males. Appl Physiol Nutrition Metab. 27(4):336–348, 2002.

    Google Scholar 

  21. Pringle, J., Doust, J., Carter, H., et al., Oxygen uptake kinetics during moderate, heavy and severe intensity ‘submaximal’ exercise in humans: The influence of muscle fibre type and capillarisation. Eur J Appli Physiol. 89:289–300, 2003.

    Article  Google Scholar 

  22. Li, Z., Jiao, K., Chen, M., et al., Reducing the effects of driving fatigue with magnitopuncture stimulation. Acc Anal Prev. 36:501–505, 2004.

    Article  Google Scholar 

  23. Clemente, V., Muñoz, V., and Melús, M., Fatiga del sistema nervioso después de realizar un test de capacidad de sprints repetidos (RSA) en jugadores de fútbol profesionales. Arch Med Deporte. 143:103–112, 2011.

    Google Scholar 

  24. Clemente, V., Martínez, A., Muñoz, V., and González, J.M., Fatigue of central nervous system after an incremental maximal oxygen uptake test. Arch Med Deporte. 137:107–118, 2010.

    Google Scholar 

  25. Clemente, V., Fatiga del sistema nervioso después de una prueba de contrarreloj de 30′ en cicloergómetro en ciclistas jóvenes. Motricidad. Eur J Hum Mov. 25:197–206, 2010.

    Google Scholar 

  26. Presland, J., Dowson, S., and Cairns, S., Changes of motor drive, cortical arousal and perceived exertion following prolonged cycling to exhaustion. Eur J Appl Physiol. 95:42–51, 2005.

    Article  PubMed  Google Scholar 

  27. Clemente, V., Huertas, C., and Juárez, D., Nervous system fatigue flicker fusion thresholds after performing a test of maximal strength in squat. Rev Entrenamiento Deportivo. 25(3):5–9, 2011.

    Google Scholar 

  28. Clemente, V., Fatigue of nervous system through flicker fusion thresholds after a maximum incremental cycling test. J Sport Health Res. 3(1):27–34, 2011.

    Google Scholar 

  29. Clemente-Suárez, V.J., Delgado-Moreno, R., González-Gómez, B., and Robles-Pérez, J.J., (2015). Respuesta psicofisiológica en un salto táctico paracaidista HAHO: caso de Estudio. San Mil. 71(3):179–182, 2015.

    Article  Google Scholar 

  30. Weston, A., Myburgh, K., Lindsay, F., et al., Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appli Physiol. 75:7–13, 1997.

    Article  CAS  Google Scholar 

  31. Leicht, A., Allen, G., and Hoey, A., Influence of intensive cycling training on heart rate variability during rest and exercise. Can J Appli Physiol. 28(6):898–909, 2003.

    Article  Google Scholar 

  32. Clemente-Suárez, V.J., Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event. Appl Physiol, Nutri, Met. 40(3):269–273, 2014.

    Article  Google Scholar 

  33. Iellamo, F., Pigozzi, F., Spataro, A., et al., T-wave and heart rate variability changes to assess training in world-class athletes. Med Sci Sports Exerc. 36(8):1342–1346, 2004.

    Article  PubMed  Google Scholar 

  34. Ramos-Campo, D.J., Martínez-Sánchez, F., Esteban-García, P., Rubio-Arias, J.A., Clemente-Suarez, V.J., and Jiménez-Díaz, J.F., The effects of intermittent hypoxia training on hematological and aerobic performance in triathletes. Act Physiol Hung. 102(4):409–418, 2015.

    Article  CAS  Google Scholar 

  35. Clemente-Suárez, V. J., Dalamitros, A. A., and Nikolaidis, P. T., The effect of a short-term training period on physiological parameters and running performance: Intensity distribution versus constant-intensity exercise. J. Sports Med. Phys. Fitness. 2016.

  36. Arroyo-Toledo, J., Clemente-Suarez, V.J., and Gonzalez-Rave, J., Effects of traditional and reverse periodization on strength, body-composition and swim performance. Imperial J Interdisciplinary Res. 2(12):474–481.

  37. Clemente-Suárez, V.J., Dalamitros, A., Ribeiro, J., Sousa, A., Fernandes, R.J., and Vilas-Boas, J.P., The effects of two different swimming training periodization on physiological parameters at various exercise intensities. Eur J Sport Sci., 2016. doi:10.1080/17461391.2016.1253775.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Clemente-Suárez.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemente-Suárez, V.J., Arroyo-Toledo, J.J. Use of Biotechnology Devices to Analyse Fatigue Process in Swimming Training. J Med Syst 41, 94 (2017). https://doi.org/10.1007/s10916-017-0741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0741-4

Keywords

Navigation