Skip to main content

Advertisement

Log in

From Pacemaker to Wearable: Techniques for ECG Detection Systems

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Wong, L.S.Y., Hossain, S., Ta, A., Edvinsson, J., Rivas, D.H., and Naas, H., A very low-power CMOS mixed IC for implantable pacemaker application. IEEE J. Solid-State Circuits. 39(12):2446–2456, 2004.

    Article  Google Scholar 

  2. Stotts, B., and Infinger, B., An 8-bit microcomputer with analog subsystems for implantable biomedical applications. In: Proc. IEEE Custom Integrated Circuit Conf., May 1988. pp. 461-463.

  3. Wong, L. S. Y. et al., A very low power CMOS mixed-signal IC for implantable pacemaker applications. In: Proc. IEEE solid state Circuit conf., Feb. 2004, pp. 318-319.

  4. Kadambe, S., Murray, R., and Bartels, G.F.B., Wavelet transform based QRS complex detector. IEEE Trans. Biomed. Eng. 46(7):838–848, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Friesen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R., and Nagle, H.T., A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37(1):85–98, 1990.

    Article  CAS  PubMed  Google Scholar 

  6. Pan, J., and Tompkins, W.J., A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3):230–236, 1985.

    Article  CAS  PubMed  Google Scholar 

  7. [Online]. Available: http://www.physionet.org/physiobank/database/mitdb. [last accessed on 14th December 2017]

  8. Hu, Y.H., Tompkins, W.J., Urrusti, J.L., and Afonso, V.X., Applications of artificial neural networks for ECG signal detection and classification. J. Electrocardiol. 26:66–73, 1993.

    PubMed  Google Scholar 

  9. Strintzis, M.G., Stalidis, G., Magnisalis, X., and Maglaveras, N., Use of neural networks for electrocardiogram (ECG) feature extraction, recognition and classification. Neural Netw. World. 3(4):313–327, 1992.

    Google Scholar 

  10. Vijaya, G., Kumar, V., and Verma, H.K., ANN-based QRS-complex analysis of ECG. J. Med. Eng. Technol. 22(4):160–167, 1998.

    Article  CAS  PubMed  Google Scholar 

  11. Xue, Q., Hu, Y.H., and Tompkins, W.J., Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39:317–329, 1992.

    Article  CAS  PubMed  Google Scholar 

  12. Pandit, D., Zhang, L., Aslam, N., Liu, C., Hossain, A., and Chattopadhyay, S., An efficient abnormal beat detection scheme from ECG signals using neural network and ensemble classifiers. SKIMA-2014, 2014, pp. 1-6.

  13. Zhou, S., Zhang, Z., and Gu, J., Time-domain ECG signal analysis based on smart phone. IEMBS-2011, 2011, pp. 2582-2585.

  14. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., and Luo, S., ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46:192–202, 1999.

    Article  CAS  PubMed  Google Scholar 

  15. Li, C., Zheng, C., and Tai, C., Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42:21–28, 1995.

    Article  CAS  PubMed  Google Scholar 

  16. Dinh, H., Kumar, D. K., Pah, N. D., Burton, P., Wavelets for QRS detection. In: Proc. 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 2, 2001, pp. 1883–1887.

  17. Szilagyi, L., Wavelet-transform-based QRS complex detection in on-line Holter systems. In: Proc. First Joint 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (BMES/EMBS). Vol. 1. Atlanta, GA, USA, 1999, pp. 271.

  18. Liang, S.Y., Ying, W.H., and Hu, W., Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. Biomed. Eng. 51:1269–1273, 2004.

    Article  Google Scholar 

  19. Zheng, X., Li, Z., Shen, L. L., and Ji, Z., Detection of QRS complexes based on biorthogonal spline wavelet. In: Proc. Int. Symp. Information Science and Engineering (ISISE ’08), Shanghai, China. Vol. 2, 2008, pp. 502–506.

  20. Alesanco, A., Olmos, S., Istepanian, R., and Garcia, J., A novel real-time multi-lead ECG compression and denoising method based on the wavelet transform. In: Proc. IEEE Computers in Cardiology. 2003, pp. 593–596.

  21. Köhler, B.U., Hennig, C., and Orglmeister, R., QRS detection using zero crossing counts. Prog. Biomed. Res. 8(3):138–145, 2003.

    Google Scholar 

  22. Suppappola, S., and Sun, Y., Nonlinear transforms of ECG signals for digital QRS detection: A quantitative analysis. IEEE Trans. Biomed. Eng. 41:397–400, 1994.

    Article  CAS  PubMed  Google Scholar 

  23. Trahanias, P.E., An approach to QRS complex detection using mathematical morphology. IEEE Trans. Biomed. Eng. 40(2):201–205, 1993.

    Article  CAS  PubMed  Google Scholar 

  24. Poli, R., Cagnoni, S., and Valli, G., Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans. Biomed. Eng. 42:1137–1141, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Meyer, C., Gavela, J.F., and Harris, M., Combining algorithms in automatic detection of QRS complexes in ECG signals. IEEE Trans. Info. Tech. Biomed. 10(3):468–475, 2007.

    Article  Google Scholar 

  26. Vullings, R., Vries, B.D., and Bergmans, J.W.M., An adaptive Kalman filter for ECG signal enhancement. IEEE Trans. Biomed. Eng. 58(4):1094–1103, 2011.

    Article  PubMed  Google Scholar 

  27. Rhyne, V.T., A digital system for enhancing the fetal electrocardiogram. IEEE Trans. Biomed. Eng. BME-16(1):80–86, 1969.

    Article  Google Scholar 

  28. Clemente, R.M., Olivares, J.L.C., Mellado, S.H., Elena, M., and Roman, I., Fast Technique for Noninvasive fetal ECG extraction. IEEE Trans. Biomed. Eng. 58(2):227–230, 2011.

    Article  Google Scholar 

  29. Martinek, R., Kelnar, M., Koudelka, P., Vanus, J., Bilik, P., Janku, P., Nazeran, H., and Zidek, J., Enhanced processing and analysis of multi-channel non-invasive abdominal foetal ECG signal during labor and delivery. Electron. Lett. 51(22):1744–1746, 2015.

    Article  Google Scholar 

  30. Banerjee, S., and Mitra, M., Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Inst. Meas. 63(2):326–333, 2014.

    Article  Google Scholar 

  31. Borro, S., Delgado, M.F., Sobrino, J.A.V., Regueiro, C.V., and Sancher, E., Classifying multichannel ECG pattern with an adaptive neural network. IEEE Eng. Med. Biol. Mag. 17(1):45–55, 1998.

    Article  Google Scholar 

  32. Bono, V., Mazomenos, E.B., Chen, T., Rojengarten, J.A., Acharyya, A., Maharatna, K., Morgan, J.M., and Curzen, N., Development of an automated updated selvester QRS scoring system using SWT-based QRS fractionation detection and classification. IEEE J. Biomed. Health Info. 18(1):193–204, 2014.

    Article  Google Scholar 

  33. Kohler, B. U., Henning, C., and Orglmeister, R., The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 42-57, 2002.

  34. Elgendi, M., Eskofier, B., Dokos, S., Abbott, D., and Revisiting, Q.R.S., detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. Plos One. 9(1):1–17, 2014.

    Article  Google Scholar 

  35. Rodrigues, J.N., Olsson, T., Sornmo, L., and Owall, V., Digital implementation of a wavelet-based event detector for cardiac pacemakers. IEEE Trans. Circuits Syst. I, Reg. Papers. 52(12):2686–2698, 2005.

    Article  Google Scholar 

  36. Kay, S.M., and Gabriel, J.R., An invariance property of the generalized likelihood ratio test. IEEE Signal Process. Lett. 10(12):352–355, 2003.

    Article  Google Scholar 

  37. Mallat, S. G., A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7):674–693, 1989.

  38. Martinez, J.P., Almeida, R., Olmos, S., Rocha, A.P., and Laguna, P., A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4):570–581, 2004.

    Article  PubMed  Google Scholar 

  39. Min, Y.J., Kim, H.K., Kang, Y.R., Kim, G.S., Park, J., and Kim, S.W., Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Trans. on Biomed. Circuit and Syst. 7(4):426–436, 2013.

    Article  Google Scholar 

  40. Getreuer, P., Filter coefficients to popular wavelets. MATLAB Central, 2006.

  41. Sweldens, W., The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 29(2):511–546, 1998.

    Article  Google Scholar 

  42. Donoho, D.L., De-noising by soft-threshold. IEEE Trans. Inf. Theory. 41(3):613–626, 1992.

    Article  Google Scholar 

  43. Sadler, P.B.M., Pham, T., and Sadler, L.C., Optimal and wavelet-based shock wave detection and estimation. J. Acoust. Soc. Am. 104(2):955–963, 1998.

    Article  Google Scholar 

  44. Kim, K.H., and Kim, S.J., A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio. IEEE Trans. Biomed. Eng. 50(8):999–1001, 2003.

    Article  PubMed  Google Scholar 

  45. Bhavtosh, Berwal, D. and Kumar, Y., High performance QRS complex detector for wearable ECG system using multi-scaled product with booth multiplier and soft threshold algorithm. In: Proc. IEEE ICSC-15, Mar. 2015, pp. 204-209.

  46. Wang, H. W., Lai, Y. L., Hou, M. C., Lin, S. H., Yen, B. S., Huang, Y. C., Chou, L. C., Hsu, S. Y., Huang, S. C., and Jan, M. Y., A ±6 ms- accuracy, 0.68 mm2 and 2.21 μW QRS detection ASIC. In: Proc. IEEE Circuits Syst. Symp. Paris, France, Jan. 2010, pp. 1372-1375.

  47. Chang, M. C., Lin, Z. X., Chang, C. W., Chan, H. L., and Feng, W. S., Design of a system-on-chip for ECG signal processing. In: IEEE AsiaPacific Conference on Circuits and Systems, 2004, pp. 441-444.

  48. Massagram, W., Boric-Lubecke, O., Macchiarulo, L., and Chen, M. Q., Heart rate variability monitoring and assessment system on chip. In: Int. Conference of the IEEE Engineering in Medicine and Biology Society, Sept. 2005, pp. 7369-7372.

  49. Wang, X. Y., Chen, M. G., Macchiarulo, L., and Boric-Lubecke, O., Fully-integrated heart rate variability monitoring system with an efficient memory. In: Int. Conference of the IEEE Engineering in Medicine and Biology Society, Aug 2006, pp. 5064-5067.

  50. Phyu, M. W., Zheng, Y. J., Zhao, B., Xin, L., and Wang, Y. S., A real-time ECG QRS detection ASIC based on wavelet multiscale analysis. In: IEEE Asian Solid-State Circuits Conference, Nov 2009, pp. 293-296.

  51. Massagram, W., Hafner, N., Chen, M., Macchiarulo, L., Lubecke, V.M., and Boric-Lubecke, O., Digital heart-rate variability parameter monitoring and assessment ASIC. IEEE Trans. Biomed. Circuit Syst. 4(1):19–26, 2010.

    Article  CAS  Google Scholar 

  52. Luk, W., and Jones, G., Systolic arrays for recursive digital filtering. IEEE Electronics Letters. 23(22):1174–1175, 1987.

    Article  Google Scholar 

  53. Baek, H.J., Chung, G.S., Kim, K.K., and Park, K.S., A smart health monitoring chair for nonintrusive measurement of biological signals. IEEE Trans. Inf. Technol. Biomed. 16(1):150–158, 2012.

    Article  PubMed  Google Scholar 

  54. Vuorela, T., Seppa, V.P., Vanhala, J., and Hyttinen, J., Design and implementation of a portable long-term physiological signal recorder. IEEE Trans. Inf. Technol. Biomed. 14(3):718–725, 2012.

    Article  Google Scholar 

  55. Yang, G., Xie, L., Mantysalo, M., Chen, J., Tenhunen, H., and Zheng, L.R., Bio-patch design and implementation based on a low-power system on-chip and paper-based inkjet printing technology. IEEE Trans. Inf. Technol. Biomed. 16(6):1043–1050, 2012.

    Article  PubMed  Google Scholar 

  56. Tsai, T.H., Hong, J.H., Wang, L.H., and Lee, S.Y., Low-power analog integrated circuits for wireless ECG acquisition systems. IEEE Trans. Inf. Technol. Biomed. 16(5):907–917, 2012.

    Article  PubMed  Google Scholar 

  57. Yan, L., Bae, J., Lee, S., Roh, T., Song, K., and Yoo, H.J., A 3.9 mW 25- electrode reconfigured sensor for wearable cardiac monitoring system. IEEE J. Solid-State Circuits. 46(1):353–364, 2011.

    Article  Google Scholar 

  58. Khayatzadeh, M., Zhang, X., Tan, J., Liew, W. S., and Lian, Y., A 0.7-V 17.4-μW 3-Lead Wireless ECG SoC. IEEE BioCAS-2012, Nov. 2012, pp. 344-47.

  59. Lee, S.Y., Hong, J.H., Hsieh, C.H., Liang, M.C., Chien, S.Y.C., and Lin, K.H., Low-power wireless ECG acquisition and classification system for body sensor network. IEEE J. Biomed. Health. Info. 19(1):236–246, 2015.

    Article  Google Scholar 

  60. Lee, S.Y., Cheng, C.J., and Liang, M.C., A low-power bidirectional telemetry device with a near-Field charging feature for a cardiac microstimulator. IEEE Trans. Biomed. Circuits Syst. 5(4):357–367, 2011.

    Article  Google Scholar 

  61. Kuo, T.H., Chen, K.D., and Chen, J.R., Automatic coefficients design for high-order sigma-delta modulators. IEEE Trans. Circuits Syst.II, Analog Digit. Signal Process. 46(1):6–15, 1999.

    Article  Google Scholar 

  62. Hong, J. H., Lee, S. Y., Liang, M. C., Hsieh, C. H., Chang Chien, S. Y., and Yen, T. Y., A wireless ECG acquisition and classification system for body sensor networks. In: Proc. IEEE 35th Annu. Int. Conf. Eng. Med. Biol. Soc. Jul. 2013, pp. 5183–5186.

  63. Cocherova, E., Surda, J., Pucik, J., and Stofanik, V., Dependence of the RF field absorption on the human body dimensions. In Proc. 19th Int. Conf. Radioelektronika, 2009, pp. 327–329.

  64. Vetterli, M., and Herley, C., Wavelets and filter banks: Theory and design. IEEE Trans. Signal Process. 40(9):2207–2231, 1992.

    Article  Google Scholar 

  65. Shyu, L.Y., Wu, Y.H., and Hu, W., Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. Biomed. Eng. 51(7):1269–1273, 2004.

    Article  PubMed  Google Scholar 

  66. Liu, X., Zheng, Y., Phyu, M.W., Zhao, B., Je, M., and Yuan, X., Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring. IEEE Trans. Biomed. Eng. 58(2):380–389, 2011.

    Article  PubMed  Google Scholar 

  67. Ieong, C.-I., Mak, P.-I., Lam, C.-P., Dong, C., Vai, M.-I., Mak, P.-U., Pun, S.-H., Wan, F., and Martins, R.P., A 0.83-uW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-uM CMOS. IEEE Trans. Biomed. Circuits Syst. 6(6):586–595, 2012.

    Article  PubMed  Google Scholar 

  68. Zou, Y., Han, J., Weng, X., and Zeng, X., An ultra-low power QRS complex detection algorithm based on down-sampling wavelet transform. IEEE Signal Process. Lett. 20(5):515–518, 2013.

    Article  Google Scholar 

  69. Wang, Y., Deepu, C. J., and Lian, Y., A computationally efficient QRS detection algorithm for wearable ECG sensors. In: Proc. 2011 Annu. Int. Conf. Eng. Med. Biol. Soc., 2011, pp. 5641–5644.

  70. Chua, E., and Fang, W., Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems. IEEE Trans. Consum. Electron. 57(1):267–273, 2011.

    Article  Google Scholar 

  71. Chen, S.L., and Wang, J.G., VLSI implementation of low-power cost efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron. Lett. 49(2):91–93, 2013.

    Article  Google Scholar 

  72. Deepu, C. J., and Lian, Y., A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans. Biomed. Eng. 62(1): 2015.

  73. Kyrkos, A., Giakoumakis, E.A., Carayannis, G., and Eurasip, G.C., QRS detection through time recursive prediction techniques. Signal Process. 15(4):429–436, 1988.

    Article  Google Scholar 

  74. Lin, K.P., and Chang, W.H., QRS feature extraction using linear prediction. IEEE Trans. Biomed. Eng. 36(10):1050–1055, 1989.

    Article  CAS  PubMed  Google Scholar 

  75. Boroujeny, B. F., Adaptive filters: Theory and Applications. Wiley: New York, NY, 1998.

  76. Der, L., and Razavi, B., A 2-GHz CMOS image-reject receiver with LMS calibration. IEEE J. Solid-State Circuits. 38(2):167–175, 2003.

    Article  Google Scholar 

  77. Gutta, S., and Cheng, Q., Joint Feature extraction and classifier design for ECG based biometric recognition. IEEE J. Biomed. Health Info. 20(2):460–468, 2016.

    Article  Google Scholar 

  78. Delano, M. K., and Sodini, C. G., “A long-term wearable electrocardiogram measurement system. In: Proc. of IEEE International Conference on Body Sensor Networks (BSN), 2013, pp. 1-6.

  79. Junior, E.A., Valentim, R.A.M., and Brandao, G.B., Real time QRS detection based on redundant discrete wavelet transform. IEEE Lat. Amer. Trans. 14(4):1662–1668, 2016.

    Article  Google Scholar 

  80. American Heart Association, AHA Database, ECRI, 5200 Butler Pike, Plymouth Meeting, PA 19462 USA.

  81. van Bemmel, J.H., and Williams, J.L., Standardisation and validation of medical decision support systems: The CSE project. Methods Inform. Med. 29:261–262, 1990.

    Google Scholar 

  82. Jenkins, J., Ann Arbor Electrogram Libraries, Available: http://electrogram.com/.

  83. Moody, G.B., and Mark, R.G., A database to support development and evaluation of intelligent intensive care monitoring. Comput Cardiol. 23:657–660, 1993.

    Google Scholar 

  84. Jager, F., Taddei, A., Moody, G.B., Emdin, M., Antolic, G., Dorn, R., Smrdel, A., Marchesi, C., and Mark, R.G., Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biol. Eng. Comput. 41(2):172–183, 2003.

    Article  CAS  PubMed  Google Scholar 

  85. National Research Council (CNR). European ST-T Database. Institute of Clinical Physiology, Dept. of Bioengineering and Medical Informatics, Pisa, Italy. Available: http://www.ifc.pi.cnr.it/

  86. Laguna, P., Mark, R.G., Goldberger, A., and Moody, G.B., A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Comput. Cardiol. 24:673–676, 1997.

    Google Scholar 

  87. Massachusetts General Hospital, Massachusetts General Hospital/Marquette Foundation Waveform Database, Dr. J. Cooper, MGH, Anesthesia Bioengineering Unit, Fruit Street, Boston, MA.

  88. ANSI/AAMIEC57: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms (AAMI Recommended Practice/American National Standard),1998. Available: http://www.aami.org;Order Code: EC57-293.

  89. Faezipour, M., Saeed, A., Bulusu, S.C., Nourani, M., Minn, H., and Tamil, L., A patient-adaptive profiling scheme for ECG beat classification. IEEE Info. Tech Biomed. 14(5):1153–1165, 2010.

    Article  Google Scholar 

  90. Buxi, D. et al.., Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring. In: Proc. IEEE BioCAS-2012, 2012, pp. 308-11.

  91. Ghaffari, A., Golbayani, H., and Ghasemi, M., A new mathematical based QRS detector using continuous wavelet transform. Comput. Electr. Eng. 34:81–91, 2008.

    Article  Google Scholar 

  92. Mahmoodabadi, S. Z., Ahmadian, A., Abolhasani, M. D., Eslami, M., and Bidgoli, J. H., ECG feature extraction based on multiresolution wavelet transform. IEEE EMB-2005, Sept. 2005, pp. 3902-05.

  93. Najeeb, D., Cardiac arrhythmias 1/3” May 2011,

  94. Taylor, G. J., 150 Practice ECGs: Interpretation and Review. WileyBlackwell, 2008.

  95. de Luna, A., Basic Electrocardiography: Normal and Abnormal ECG Patterns. John Wiley & Sons, 2008.

  96. Gacek, A. and Pedrycz, W., Ecg signal analysis, classification, and interpretation: A framework of computational intelligence. In Gacek, A. and Pedrycz, W., (Eds.), ECG Signal Processing, Classification and Interpretation. London: Springer, 2012.

  97. Clifford, G. D., Azuaje, F., and McSharry, P., Advanced methods and tools for ECG data analysis. Artech House, Inc.: Norwood, MA, 2006.

  98. Hampton, J.R., 150 ECG problems. Churchill Livingstone, 2003.

  99. Kushner, F. G., and Bates, E. R., Chapter 10 - st-segment elevation myocardial infarction. In: Cardiovascular Therapeutics: A Companion to Braunwald’s Heart Disease (Fourth Edition), fourth edition ed. W.B. Saunders: Philadelphia, 2013, pp. 178 – 213.

  100. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., and Stanley, H.E., Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation. 101(23):e215–e220, 2000.

    Article  CAS  PubMed  Google Scholar 

  101. Ravanshad, N., Dehsorkh, H.R., Lotfi, R., and Lian, Y., A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J. Biomed. Health Info. 18(1):183–192, 2014.

    Article  Google Scholar 

  102. Suarez, K.V., Silva, J.C., Berthoumieu, Y., Gomis, P., and Najim, M., ECG beat detection using a geometrical matching approach. IEEE Trans. Biomed. Eng. 54(4):641–650, 2007.

    Article  PubMed  Google Scholar 

  103. Chen, S.W., Chen, H.C., and Chan, H.L., A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. J. Comput. Methods Programs. Biomed. 82:187–195, 2006.

    Article  Google Scholar 

  104. Faezipour, M., Saeed, A., Bulusu, S.C., Nourani, M., Minn, H., and Tamil, L., A patient-adaptive profiling scheme for ECG beat classification. IEEE Trans. Info. Tech. Biomed. 14(5):1153–1165, 2010.

    Article  Google Scholar 

  105. Zou, Y., Han, J., Xuan, S., Huang, S., Weng, X., Fang, D., and Zeng, X., An energy-efficient design for ECG recording and R-Peak detection based on wavelet transform. IEEE Trans. Circ. Syst.-II: Exp. Briefs. 62(2):119–124, 2015.

    Google Scholar 

  106. Benmalek, M., and Charef, A., Digital fractional order operators for R-wave detection in electrocardiogram signal. IET Signal Proc. 3(5):381–391, 2009.

    Article  Google Scholar 

  107. Pan, T., Zhang, L., and Zhou, S., Detection of ECG characteristic Points using biorthogonal spline wavelet. BMEI-2010, 2010, pp. 858-63.

  108. Bahoura, M., Hassani, M., and Hubin, M., DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis. Comput. Meth. Programs Biomed. (52):35-44, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Kumar.

Additional information

This article is part of the Topical Collection on Mobile & Wireless Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Komaragiri, R. & Kumar, M. From Pacemaker to Wearable: Techniques for ECG Detection Systems. J Med Syst 42, 34 (2018). https://doi.org/10.1007/s10916-017-0886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0886-1

Keywords

Navigation