Skip to main content
Log in

Different Digitalization Techniques for 3D Printing of Anatomical Pieces

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The use of different technological devices that allow the creation of three-dimensional models is in constant evolution, allowing a greater application of these technologies in different fields of health sciences and medical training. The equipment for digitalization is becoming increasingly sophisticated allowing obtaining three-dimensional which are more defined and similar to real image and original object. In this work, different modalities of designing 3D anatomical models of bone pieces are presented, for use by students of different disciplines in Health Sciences. To do this we digitalized bone pieces, with different models of scanners, producing images that can be transformed for 3D printing, with a Colido X 3045 printer by digital treatment with different software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Juanes, J.A., Hernández, D., Ruisoto, P., García, E., Villarrubia, G., and Prats, A., Augmented reality techniques, using mobile devices, for learning human anatomy. Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality. New York, NY, USA: ACM, p. 7–11. https://doi.org/10.1145/2669711.2669870, 2014.

  2. Lozano, M.T., Méndez, J.A., Diaz, C.M., Manzoor, S., Ugidos, G.F., and Haro, F.B., Processing and additive manufacturing of bones for the teaching of human anatomy. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality. ACM, p. 533–536, 2016.

  3. Pujol, S., Baldwin, M., Nassiri, J., Kikinis, R., and Shaffer, K., Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Acad. Radiol. 23:507–516, 2016. https://doi.org/10.1016/j.acra.2015.12.012.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guvendiren, M., Molde, J., Soares, R. M. D., and Kohn, J., Designing biomaterials for 3D printing. ACS Biomater Sci. Eng. https://doi.org/10.1021/acsbiomaterials.6b00121, 2016.

  5. Szymor, P., Kozakiewicz, M., and Olszewski, R., Accuracy of open-source software segmentation and paper-based printed three-dimensional models. J. Cranio-Maxillofac. Surg. 44:202–209, 2016. https://doi.org/10.1016/j.jcms.2015.11.002.

    Article  Google Scholar 

  6. Park, J.W., Oh, S.A., Yea, J.W., and Kang, M.K., Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner. PLoS One. 12:e0177562, 2017. https://doi.org/10.1371/journal.pone.0177562.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bostelman, R., Teizer, J., Ray, S.J., Agronin, M., and Albanese, D., Methods for improving visibility measurement standards of powered industrial vehicles. Saf. Sci. 62:257–270, 2014. https://doi.org/10.1016/j.ssci.2013.08.020.

    Article  Google Scholar 

  8. Jose, R.R., Rodriguez, M.J., Dixon, T.A., Omenetto, F., and Kaplan, D.L., Evolution of Bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater Sci. Eng. https://doi.org/10.1021/acsbiomaterials.6b00088, 2016.

  9. B Jamayet, N., J Abdullah, Y., A Rajion, Z., Husein, A., and K Alam, M., New approach to 3D printing of facial prostheses using combination of open source software and conventional techniques: A case report. Bull. Tokyo Dent. Coll. 58:117–124, 2017. https://doi.org/10.2209/tdcpublication.2016-0021.

    Article  PubMed  Google Scholar 

  10. Acuna, F., Rivas, D., Chancusi, S., and Navarrete, P., Design and construction of a 3D printer auto controller wirelessly through of free software. IEEE Lat. Am. Trans. 13:1893–1898, 2015. https://doi.org/10.1109/TLA.2015.7164214.

    Article  Google Scholar 

  11. Modabber, A., Peters, F., Kniha, K., Goloborodko, E., Ghassemi, A., Lethaus, B., et al., Evaluation of the accuracy of a mobile and a stationary system for three-dimensional facial scanning. J. Cranio-Maxillofac. Surg. 44:1719–1724, 2016. https://doi.org/10.1016/j.jcms.2016.08.008.

    Article  Google Scholar 

  12. Yeole, S., and Rajashekhar, S., Modeling of human humerus bone for 3D printing, 2015.

  13. Guo, N., and Leu, M.C., Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 8:215–243, 2013. https://doi.org/10.1007/s11465-013-0248-8.

    Article  Google Scholar 

  14. Galantucci, L.M., Percoco, G., Angelelli, G., Lopez, C., Introna, F., Liuzzi, C., et al., Reverse engineering techniques applied to a human skull, for CAD 3D reconstruction and physical replication by rapid prototyping. J. Med. Eng. Technol. 30:102–111, 2006. https://doi.org/10.1080/03091900500131714.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Y., Liu, X., Xia, Y., Liu, X., Wu, W., Xiong, H., et al., Impact of spatial characteristics in the left stenotic coronary artery on the hemodynamics and visualization of 3D replica models. Sci. Rep. 7:15452, 2017. https://doi.org/10.1038/s41598-017-15620-1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Murakami, T., Tajika, Y., Ueno, H., Awata, S., Hirasawa, S., Sugimoto, M., et al., An integrated teaching method of gross anatomy and computed tomography radiology. Anat. Sci. Educ. 7:438–449, 2014. https://doi.org/10.1002/ase.1430.

    Article  PubMed  Google Scholar 

  17. Murgitroyd, E., Madurska, M., Gonzalez, J., and Watson, A., 3D digital anatomy modelling – practical or pretty? Surg. 13:177–180, 2015. https://doi.org/10.1016/j.surge.2014.10.007.

    Google Scholar 

  18. Zhang, Y., Ying, Z., Shen, Z., Nishino, T., and Chen, X., 3D laser scanning technology-based historic building mapping for historic preservation. Int. Rev. Spat. Plann. Sustainable Dev. 3:53–67, 2015. https://doi.org/10.14246/irspsd.3.2_53.

    Article  Google Scholar 

  19. Sebastián, J.M.T., Escaneado en 3D y prototipado de piezas arqueológicas: Las nuevas tecnologías en el registro, conservación y difusión del Patrimonio Arqueológico. Iberia Revista de la Antigüedad. 8:135–158, 2013.

    Google Scholar 

  20. Corns, A., Deevy, A., Devlin, G., Kennedy, L., and Shaw, R., 3D-ICONS: Digitizing cultural heritage structures. New Rev. Inf. Netw. 20:59–65, 2015. https://doi.org/10.1080/13614576.2015.1115232.

    Article  Google Scholar 

  21. Mukhtar, A., Xia, L., and Tang, T.B., Vehicle detection techniques for collision avoidance systems: A review. IEEE Trans. Intell. Transp. Syst. 16:2318–2338, 2015. https://doi.org/10.1109/TITS.2015.2409109.

    Article  Google Scholar 

  22. Nguyen, L.V., La, H.M., Sanchez, J., and Vu, T., A smart shoe for building a real-time 3D map. Autom. Constr. 71:2–12, 2016. https://doi.org/10.1016/j.autcon.2016.03.001.

    Article  Google Scholar 

  23. Groenendyk, M., and Gallant, R., 3D printing and scanning at the Dalhousie University Libraries: A pilot project. Libr. Hi Tech. 31:34–41, 2013. https://doi.org/10.1108/07378831311303912.

    Article  Google Scholar 

  24. Abudayyeh, I., Gordon, B., Ansari, M. M., Jutzy, K., Stoletniy, L., and Hilliard, A., A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples. J. Interv. Cardiol. https://doi.org/10.1111/joic.12446, 2017.

  25. Knoops, P.G.M., Biglino, G., Hughes, A.D., Parker, K.H., Xu, L., Schievano, S., et al., A mock circulatory system incorporating a compliant 3D-printed anatomical model to investigate pulmonary hemodynamics. Artif. Organs. 41:637–646, 2017. https://doi.org/10.1111/aor.12809.

    Article  CAS  PubMed  Google Scholar 

  26. Müller-Stich, B.P., Löb, N., Wald, D., Bruckner, T., Meinzer, H.-P., Kadmon, M., et al., Regular three-dimensional presentations improve in the identification of surgical liver anatomy—a randomized study. BMC Med. Educ. 13:131, 2013. https://doi.org/10.1186/1472-6920-13-131.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cartiaux, O., Paul, L., Francq, B.G., Banse, X., and Docquier, P.-L., Improved accuracy with 3D planning and patient-specific instruments during simulated pelvic bone tumor surgery. Ann. Biomed. Eng. 42:205–213, 2014. https://doi.org/10.1007/s10439-013-0890-7.

    Article  PubMed  Google Scholar 

  28. Carrara, C.F.C., Ambrosio, E.C.P., Mello, B.Z.F., Jorge, P.K., Soares, S., Machado, M.A.A.M., et al., Three-dimensional evaluation of surgical techniques in neonates with orofacial cleft. Ann. Maxillofac. Surg. 6:246–250, 2016. https://doi.org/10.4103/2231-0746.200350.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goel, A., Jankharia, B., Shah, A., and Sathe, P., Three-dimensional models: An emerging investigational revolution for craniovertebral junction surgery. J. Neurosurg. Spine. 25:740–744, 2016. https://doi.org/10.3171/2016.4.SPINE151268.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ugidos Lozano.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugidos Lozano, M.T., Blaya Haro, F., Ruggiero, A. et al. Different Digitalization Techniques for 3D Printing of Anatomical Pieces. J Med Syst 42, 46 (2018). https://doi.org/10.1007/s10916-018-0903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-0903-z

Keywords

Navigation