Skip to main content

Advertisement

Log in

Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel algorithm (CVSTSCSP) for determining discriminative features from an optimal combination of temporal, spectral and spatial information for motor imagery brain computer interfaces. The proposed method involves four phases. In the first phase, EEG signal is segmented into overlapping time segments and bandpass filtered through frequency filter bank of variable size subbands. In the next phase, features are extracted from the segmented and filtered data using stationary common spatial pattern technique (SCSP) that can handle the non- stationarity and artifacts of EEG signal. The univariate feature selection method is used to obtain a relevant subset of features in the third phase. In the final phase, the classifier is used to build adecision model. In this paper, four univariate feature selection methods such as Euclidean distance, correlation, mutual information and Fisher discriminant ratio and two well-known classifiers (LDA and SVM) are investigated. The proposed method has been validated using the publicly available BCI competition IV dataset Ia and BCI Competition III dataset IVa. Experimental results demonstrate that the proposed method significantly outperforms the existing methods in terms of classification error. A reduction of 76.98%, 75.65%, 73.90% and 72.21% in classification error over both datasets and both classifiers can be observed using the proposed CVSTSCSP method in comparison to CSP, SBCSP, FBCSP and CVSCSP respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bashashati, A., Fatourechi, M., Ward, R. K., and Birch, G. E., A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4(2):R32–R57, 2007.

    Article  PubMed  Google Scholar 

  2. Dornhege, G. ed., Toward Brain-computer Interfacing. MIT Press, 2007.

  3. Nordin, N., Xie, S. Q., and Wünsche, B., Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review. J. Neuroengineering Rehabil. 11(1):137, 2014.

    Article  Google Scholar 

  4. Li, Y., Pan J., He, Y., Wang, F., Laureys, S., Xie, Q., and Yu, R., Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system. BMC Neurol. 15(1):259, 2015.

  5. Kasahara, T., Terasaki, K., Ogawa, Y., Ushiba, J., Aramaki, H., and Masakado, Y., The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients. BMC Neurosci. 13(1):66, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wolpaw, J. R., and Wolpaw, E. W., Brain-computer interfaces: principles and practice. OUP: USA, 2012.

  7. Nicolas-Alonso, L. F., and Gomez-Gil, J., Brain Computer Interfaces, a Review. Sensors. 12(12):1211–1279, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yi, W., Qiu, S., Wang, K., Qi, H., He, F., Zhou, P., Zhang, L., and Ming, D., EEG oscillatory patterns and classification of sequential compound limb motor imagery. J. NeuroEngineering Rehabil. 13(1):259, 2016.

  9. Hatamikia, S., and Nasrabadi, A. M., Subject transfer BCI based on Composite Local Temporal Correlation Common Spatial Pattern. Comput. Biol. Med. 64:1–11, 2015.

    Article  PubMed  Google Scholar 

  10. Yi, W., Qiu, S., Qi, H., Zhang, L., Wan, B., and Ming, D., EEG feature comparison and classification of simple and compound limb motor imagery. J. Neuroengineering Rehabil. 10(1):106, 2013.

    Article  Google Scholar 

  11. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M., Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6):767–791, 2002.

    Article  PubMed  Google Scholar 

  12. Pfurtscheller, G., and Neuper, C., Motor imagery and direct brain-computer communication. Proc. IEEE. 89(7):1123–1134, 2001.

    Article  Google Scholar 

  13. Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G., Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4):441–446, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Müller-Gerking, J., Pfurtscheller, G., and Flyvbjerg, H., Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110(5):787–798, 1999.

    Article  PubMed  Google Scholar 

  15. Lu, H., Eng, H.-L., Guan, C., Plataniotis, K. N., and Venetsanopoulos, A. N., Regularized Common Spatial Pattern With Aggregation for EEG Classification in Small-Sample Setting. IEEE Trans. Biomed. Eng. 57(12):2936–2946, 2010.

    Article  PubMed  Google Scholar 

  16. Grosse-Wentrup, M., Schölkopf, B., and Hill, J., Causal influence of gamma oscillations on the sensorimotor rhythm. NeuroImage. 56(2):837–842, 2011.

    Article  PubMed  Google Scholar 

  17. Samek, W., Vidaurre, C., Müller, K.-R., and Kawanabe, M., Stationary common spatial patterns for brain–computer interfacing. J. Neural Eng. 9(2):026013, 2012.

    Article  PubMed  Google Scholar 

  18. McFarland, D. J., and Wolpaw, J. R., Brain-computer interfaces for communication and control. Commun. ACM 54(5):60, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Novi, Q., Guan, C., Dat, T. H., and Xue, P., Sub-band common spatial pattern (SBCSP) for brain-computer interface. Neural Engineering, 2007. CNE’07. 3rd International IEEE/EMBS Conference on. pp. 204–207. IEEE, 2007.

  20. Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C., Filter bank common spatial pattern (FBCSP) in brain-computer interface. Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on. pp. 2390–2397. IEEE, 2008.

  21. Kirar, J. S., and Agrawal, R. K., Optimal Spatio-spectral Variable Size Subbands Filter for Motor Imagery Brain Computer Interface. Procedia Comput. Sci. 84:14–21, 2016.

    Article  Google Scholar 

  22. Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C., Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs. Brain Decod. 45(6):2137–2144, 2012.

    Google Scholar 

  23. Wei, Z., and Wei, Q., The backtracking search optimization algorithm for frequency band and time segment selection in motor imagery-based brain–computer interfaces. J. Integr. Neurosci. 15(03):347–364, 2016.

    Article  PubMed  Google Scholar 

  24. Iman, R. L., and Davenport, J. M., Approximations of the critical region of the fbietkan statistic. Commun. Stat.-Theory Methods. 9(6):571–595, 1980.

    Article  Google Scholar 

  25. Liu, G., Huang, G., Meng, J., and Zhu, X., A frequency-weighted method combined with Common Spatial Patterns for electroencephalogram classification in brain–computer interface. Biomed. Signal Process. Control. 5(2):174–180, 2010.

    Article  Google Scholar 

  26. Kam, T.-E., Suk, H.-I., and Lee, S.-W., Non-homogeneous spatial filter optimization for ElectroEncephaloGram (EEG)-based motor imagery classification. Neurocomputing. 108:58–68, 2013.

    Article  Google Scholar 

  27. Fattahi, D., Nasihatkon, B., and Boostani, R., A general framework to estimate spatial and spatio-spectral filters for EEG signal classification. Neurocomputing. 119:165–174, 2013.

    Article  Google Scholar 

  28. Zhang, Y., Zhou, G., Jin, J., Wang, X., and Cichocki, A., Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. J. Neurosci. Methods. 255:85–91, 2015.

    Article  PubMed  CAS  Google Scholar 

  29. Meng, J., Yao, L., Sheng, X., Zhang, D., and Zhu, X., Simultaneously Optimizing Spatial Spectral Features Based on Mutual Information for EEG Classification. IEEE Trans. Biomed. Eng. 62(1):227–240, 2015.

    Article  PubMed  Google Scholar 

  30. Khushaba, R. N., Al-Ani, A., and Al-Jumaily, A., Differential evolution based feature subset selection. Pattern Recognition, 2008. ICPR 2008. 19th International Conference on. pp. 1–4. IEEE, 2008.

  31. Kirar, J. S., and Agrawal, R. K., Composite kernel support vector machine based performance enhancement of brain computer interface in conjunction with spatial filter. Biomed. Signal Process. Control. 33(Supplement C):151–160, 2017.

    Article  Google Scholar 

  32. Guyon, I., and Elisseeff, A., An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar):1157–1182, 2003.

    Google Scholar 

  33. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V., Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1):389–422, 2002.

    Article  Google Scholar 

  34. Battiti, R., Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5(4):537–550, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Webb, A. R., Statistical pattern recognition. John Wiley & Sons, 2003.

  36. Bishop, C. M., Pattern recognition and machine learning. Springer, 2006.

  37. Dornhege, G., Blankertz, B., Curio, G., and Muller, K.-R., Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51(6):993–1002, 2004.

    Article  PubMed  Google Scholar 

  38. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., and Curio, G., The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage. 37(2):539–550, 2007.

    Article  PubMed  Google Scholar 

  39. Kirar, J. S., Choudhary, A., and Agrawal, R. K., Selection of Relevant Electrodes Based on Temporal Similarity for Classification of Motor Imagery Tasks. In: Shankar, B. U., Ghosh, K., Mandal, D. P., Ray, S. S., Zhang, D., and Pal, S. K., (Eds.), Pattern Recognition and Machine Intelligence: 7th International Conference, PReMI 2017, Kolkata, India, December 5–8, 2017, Proceedings. Cham: Springer International Publishing, 2017, 96–102.

Download references

Funding

This study was funded by University Grant Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Singh Kirar.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirar, J.S., Agrawal, R.K. Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG. J Med Syst 42, 78 (2018). https://doi.org/10.1007/s10916-018-0931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-0931-8

Keywords

Navigation