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Abstract 

Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of 

the available therapeutic options are based on active exercises and on motor and attentional 

inclusion of the affected arm in task oriented movements. However, active movements may not 

be possible after severe impairment of the upper limbs. Different techniques, such as mirror 

therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical 

activity in absence of movements, which could be used to preserve the available neural circuits 

and promote motor learning. We present a virtual reality-based paradigm for upper limb 

rehabilitation that allows for interaction of individuals with restricted movements from active 

responses triggered when they attempt to perform a movement. The experimental system also 

provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial 

direct current stimulation coherent to the observed movements. A feasibility study with a chronic 

stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two 

years of its inclusion in a physical therapy program showed clinically meaningful improvement 

of the upper limb function after the experimental intervention and maintenance of gains in both 

the body function and activity. The experimental intervention also was reported to be usable and 

motivating. Although very preliminary, these results could highlight the potential of this 

intervention to promote functional recovery in severe impairments of the upper limb.   

 

Keywords: virtual reality; tDCS; eye-tracking; surface electromyography; upper limb paresis; 

monoparesis, stroke 
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Introduction 

Impairments of the upper limb (UL) function, a common sequelae affecting more than 85% of 

stroke survivors [1] and other neurological conditions, have been reported to have a strong negative 

impact in the performance of the activities of daily living (ADL’s) and the quality of life [2], which 

makes them one of the major causes for rehabilitation. Although there is no standard intervention 

for UL rehabilitation [3], recovery of the function is believed to occur in response to active exercise 

and to motor and attentional inclusion of the affected arm in task oriented movements [4,5]. 

According to this, uncertain prognosis is expected when active movements are not present. As a 

proof, the major predictor of UL recovery after a stroke has been reported to be the baseline 

condition of the UL function [6]. Traditionally, therapeutic options for severe impairment of the 

UL function have focused on preserving the mobility and flexibility of the affected extremity [7,8] 

and compensating for the deficit by training the opposite limb in daily tasks [4,9]. However, the 

non-use of the affected limb derived from the latter techniques may lead to a form of “learned 

paralysis” [10,11], which could reduce the sensorimotor representation of the arm in the available 

neural circuits [12] and limit its functional recovery [9].  

 Techniques based on motor observation and imagination, as mirror therapy [8,13] or motor 

imagery [14,15], have been shown to elicit cortical activity coherent with the observed or imagined 

movements [15,16], which is supported by the mirror neuron system theory [17]. Non-invasive 

brain stimulation, as transcranial magnetic stimulation and transcranial direct current stimulation 

(tDCS) have been shown to modulate excitability of the brain cortex by facilitating somatosensory 

evoked potentials [18,19]. The promotion of brain activity in absence of movement may support 

the use of these therapies and techniques as therapeutic options in cases of severe UL impairment. 

Interestingly, their combined use has been shown to synergistically increase their effect. For 

instance, the combination of tDCS and a motor observation intervention has been reported to have 

additive effects on motor performance [20]. And, moreover, the addition of tDCS to a motor 

observation and execution task mediated by virtual reality (VR) has reported to increase short-term 

corticospinal facilitation [21]. The capacity of VR to provide controlled multi-modal stimulation 
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in one or more sensory channels [22] has motivated its use in motor observation and imagery 

interventions [23,24]. Its capacity to enable real-time user interaction with metaphors that do not 

require real movements is specially interesting to allow for participation of individuals with severe 

impairments of the UL function, and close the loop of interaction-stimulation [25].  

In light of the previous work, we hypothesize that a paradigm combining tDCS and a VR-

based motor observation task triggered by conscious active responses would provide a feasible 

rehabilitation framework for individuals with severely affected UL function. The objective of this 

paper is twofold: first, to describe the experimental rehabilitation paradigm; and second, to 

determine its clinical efficacy and acceptance in a chronic stroke survivor with severe 

hemiparesis. 

System description 

Instrumentation 

A standard laptop, a Dell Inspiron 7520 (Dell Inc., TX, USA) that incorporates an 8-core Intel(R) 

Core(TM) i7-3632QM CPU@2.20GHz with 8 GB of RAM and runs Windows 10 Pro 64-bit, is 

used in the experimental setting (Fig. 1). Unity version 5.1 (Unity Technologies, CA, US) is used 

to generate stimuli and manage communication between devices.  

Interaction 

Interaction is enabled by gaze and/or muscular activity or movements. Users’ gaze is estimated 

using a portable low-cost eye-tracking system, the EyeX (Tobii Technology AB, Danderyd, 

Sweden) (Fig. 1.a). The device can estimate the spot on a screen where users are looking from the 

reflections of an infrared light in their pupils [26] and provide gaze data with a minimum framerate 

of 30 Hz in an operating range of 50 to 90 cm.  

 The users’ muscular activity and movements are estimated using a low-cost gesture and 

motion control armband, the Myo (Thalmic Labs, Kitchener, ON, Canada) (Fig. 1.b). The device 

includes different types of sensors to detect surface electromyographic activity (sEMG) [27], 
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angular velocity, and acceleration. The sEMG data are provided by seven medical-grade stainless 

steel sensors that surround the users’ arm while in use, angular velocity data are provided by a 

three-axis gyroscope, and acceleration data are provided by a three-axis accelerometer at a 

framerate of 200, 50, and 50 Hz, respectively. Main potential contributors to the sEMG data are 

the brachioradialis, palmaris longus, and flexors and extensors of the fingers. The Myo can expand 

from 19 to 34 cm forearm circumference and has a weight of 93 g and about 1 cm of thickness. 

Stimulation 

Stimulation involves provision of audiovisual and vibrotactile feedback, and non-invasive brain 

stimulation. Visual stimulation is provided by the 15.6” laptop screen (Fig. 1.c). Auditory 

feedback is provided by two speakers, which are embedded in the laptop and located at opposite 

ends of the keyboard (Fig. 1.d). 

 Vibrotactile feedback is provided using three coin vibrators with 4 mm of radius that are 

embedded in a hand-made Velcro band (Fig. 1.e). The band was designed to wrap the users’ hands 

in such a way that vibrators are located approximately in the palmar side of the 

metacarpophalangeal joint of the thumb, index, and pinky fingers (Fig. 2). The frequency of the 

vibration is set to 200±40 Hz and controlled through an Arduino Nano (Interaction Design Institute 

Ivrea, Ivrea, Italy). The weight of the vibration band is 75 g. 

tDCS was provided using a wireless hybrid EEG/tDCS headset, the StarStim 8 

(Neuroelectrics, Barcelona, Spain), which includes an 8-channel amplifier and a neoprene 

headcap with 39 positions based on the 10-10 system, where the electrodes can be inserted (Fig. 

1.f). The headset enable currents up to 2 mA with a resolution of 1 μA.  

Setting 

Interaction and stimulation are modular, so the number of responses for interaction and the modes 

of stimulation, with the only exception of the visual feedback, are configurable (Table 1). 

Interaction with the system considering all the responses and stimulation modes requires 

users to wear the armband and the vibration band in the affected limb, and the tDCS headset. Users 
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are also required to sit in a chair with armrests, with their arms resting on them, their backs leaning 

against the backrest, and their heads fixed in a comfortable position (Fig. 1). The laptop is placed 

approximately at 50 cm in front of the users, 20 cm below eye-level. The eye-tracking system is 

fixed to the laptop and tilted towards their eyes. Brain stimulation can be unilateral or bilateral. In 

case of unilateral stimulation, the anode is placed over the ipsilesional primary motor cortex (M1) 

(C3 or C4 for left or right impairment, respectively) and the cathode is placed in the contralesional 

supraorbital cortex (Fp2 or Fp1 for left or right impairment, respectively). In case of bilateral 

stimulation, the anode is placed over the ipsilesional primary motor cortex and the cathode is 

placed in the contralesional primary motor cortex. The brain stimulation can be passive, where 

stimulation is administered constantly throughout the session, or active, where stimulation is 

administered only when intention of movement is detected from the muscular activity and 

movements. In any configuration, the tDCS electrodes are soaked in saline solution before their 

arrangement, impedances are kept below 10 kΩ, voltage below 26 V, and output intensity is set to 

2 mA.  

Calibration 

The capacity of interaction of the users using their gaze, muscular contraction, and arm movements 

are registered in a customized calibration process.   

 Calibration of eye-tracking systems usually involves staring at a target that appears and 

disappears or randomly moves around the screen at a certain speed, while having the head as still 

as possible. To maximize participation of users with cognitive impairment, who might have 

difficulties to perform this task, we designed a customized eye-tracking calibration that consists on 

following a white cross that slowly traces a cross-path on a black background, which has been 

shown to be effective even in severely affected individuals [28]. The calibration process also allows 

for using personalized targets, such as images with positive valence or familiar faces, which have 

demonstrated to modulate visual search [29]. From the position of the target on the screen 
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coordinates and the users’ pupils on the coordinates of the eye-tracking system, the calibration 

process estimates the gaze of the users on the screen coordinates. 

 Analogously, calibration of the Myo requires performing different movements as pincer 

grips, adduction and abduction of the fingers, or making a fist, which restricts its use to healthy 

individuals. To facilitate participation of individuals with restricted arm or hand movements, we 

developed a customized calibration process that requires users to attempt a reaching movement 

three times. Specifically, an apple is shown on the screen and users are required to rest their arms 

on the armrests of the chair initially (resting condition) and try to pick it up using their affected 

arm for three times. The sEMG activity, the angular velocity, and the acceleration provided by the 

armband are registered in the resting condition and during the movement. The sEMG is considered 

a meaningful variable of interaction if the average amplitude during the movement is five or more 

times the activity during the resting condition in one sensor at least. Similarly, the angular velocity 

and acceleration are considered meaningful variables of interaction if their average values during 

the movement are at least twice the average velocity and acceleration registered during the resting 

condition. The calibration process provided the maximum values of the sEMG activity in the seven 

sensors and/or the maximum angular velocity and acceleration that users who successfully passed 

the test were able to generate.  

Exercise 

The virtual environment presents both left and right virtual arms from a first-person perspective in 

front of an apple tree (Fig. 3.a). A serial of apples appear on the branches and disappear a few 

seconds after. Apples can appear at four different heights in the left or right part of the environment, 

corresponding to the ideally reachable space of the real left and right arm, respectively. 

Environmental sounds, such as birds signing and the sound of the wind are provided. Extrinsic 

feedback is also provided, including the time left, number of repetitions, and record number of 

repetitions. 
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The objective of the task is to pick up the apples before they disappear. To achieve that 

goal, users have to attempt the reaching movement while looking at the apple. An attempt is 

considered successful if users stare at the apple for a required number of seconds and if the 

intended movement generates a peak of muscular activity, angular velocity, or acceleration 

greater than the 80% of the maximum values registered in the calibration process. In this case, a 

winning sound effect is provided and the virtual environment shows an animation of the virtual 

arm extending towards the apple (Fig. 3.b), which is also indicated with the consecutive vibration 

of the three vibrotactile actuators (Fig. 2), grasping it (Fig. 3.c), bringing it towards the users’ 

virtual mouth (Fig. 3.d), and biting it (Fig.3.e). The virtual environment then simulates that the 

apple is bitten several times, which is also indicated with synchronous biting sound effects and 

vibrations, and the arm is finally moved to the initial resting position. An attempt is considered 

unsuccessful if the generated activity does not exceed the specified threshold, which is 

represented by a losing sound effect and showing no movement of the virtual arms, or if the 

activity is sufficient but users do not stare at the apple for the required number of seconds, which 

is represented by the same sound effect and by a reaching movement of the virtual arm towards a 

wrong direction. Brain stimulation is provided according to the configuration of the session.  

Feasibility study 

Participant 

R.V. is a 38-year-old male with a severe left hemiparesis secondary to a right intraparenchymal 

temporoparietal hemorrhage with reactive ischemic gliosis confirmed by magnetic resonance 

examination four years prior to this intervention. R.V. had an intraparenchymal and auricular 

rebleeding with acute hydrocephalus one year after the first lesion, and underwent a craniotomy 

and exeresis of an arteriovenous malformation the following year. When he was admitted to our 

long-term neurorehabilitation program six months after the craniotomy, presented a left sensory-

motor deficit with left spastic hemiparesis and hypesthesia, which affected the UL function, and 

to a lesser extent, the balance ability and gait (Table 2). R.V. showed independence in the 

performance of ADL’s but not on instrumental activities. Neuropsychological examination 



9 
 

evidenced a mild cognitive impairment with important attentional deficits, specially in alternating 

and sustained attention, with slow reaction time, and difficulties to organize and plan tasks of 

medium complexity. For two years before the experimental intervention with the system, R.V. 

attended a holistic neurorehabilitation program that included physical therapy. Motor intervention 

on the ULs focused on maximizing functionality of the paretic UL while preserving mobility and 

flexibility of the articular joints. Specifically, it included passive mobilization of those segments 

where no active movement was detected, assisted active movements in case of residual active 

movement capability, functional electrotherapy, mirror therapy, Perfetti-based therapy, robot-

assisted reaching movements with the Armeo (Hocoma AG, Volketswil, Switzerland), and 

botulinum toxin treatment administered on biceps bracii, palmaris longus, flexor digitorum 

profundus, and superficialis. The motor condition of R.V. progressed for the first year and a half, 

but the assessment two years after admission seemed to evidence a motor plateau (Table 3). 

Basing on his progress and prognosis he was prescribed to an intervention with the experimental 

system, three years and four months after the first onset. R.V. provided informed written consent 

before the intervention. 

Procedure 

Intervention consisted of 75 sessions, divided in three phases of a reversal A-B-A design. Each 

phase included 25 one-hour sessions administered three times a week. In phase A, R.V. underwent 

a rehabilitation program combining the rehabilitation approaches mentioned above. In phase B, 

R.V. combined 40 minutes of this program with 20 minutes with the experimental system. 

Interaction with the system included gaze, muscular activity, and arm movements. Stimulation 

included audiovisual and vibrotactile feedback, and passive unilateral brain stimulation. The 

exercise included four interaction areas in the left side. Interaction, activity, and inactivity time 

were set to 10 s, 10 s, and 4 s, respectively. A fixation time of 2 s was required. All the sessions 

were supervised by a physical therapist in a dedicated area of the physical therapy unit. Before 

each session, the physical therapist equipped R.V. with the instrumentation and conducted the 
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calibration. During the session, the physical therapist provided him with instructions and prevented 

him from making extreme compensatory movements.  

Assessment was administered by a blind physical therapist at baseline and at the end of 

each phase, and evaluated the body functions with the UL subscale of the Fugl-Meyer Assessment 

Scale (FMA-UE) [30], and the body activities with the time and functional ability scores of the 

Wolf Motor Function Test (WMFT) [31]. At the end of the intervention, R.V. was also asked to 

provide feedback about the usability of the system using the System Usability Scale (SUS) [32] 

and about his motivation with four subscales of the Intrinsic Motivation Inventory (IMI) [33].  

Results 

After the first physical therapy program, no changes were detected in the FMA-UE and limited 

improvements were detected in both the time and ability subscales of the WMFT, which 

represented a relative amelioration of less than 1.8% and 4.2%, respectively (Table 4). After the 

experimental intervention with the system, the participant showed an improvement of 13 points 

in the FMA-UE, which represented a relative increase of 86.7%, an improvement of 120 s in the  

performance time of the WMFT, which represented a 10.9%, and increased their score in the 

functional ability subscale of the WMFT in 3 points, which represented a relative improvement 

of 12%. Importantly, improvement exceeded the minimally clinically important difference of both 

scales [31,34]. Results of the final assessment showed relative maintenance of gains after the 

second physical therapy program, with a slight decrease in the FMA-UE and in the timed subscale 

of the WMFT. With regards to the subjective acceptance of the experimental intervention, the 

system was perceived as being usable (80 from a total score of 100), enjoyable (7 of 7), and useful 

(7 of 7) and R.V. felt himself competent (7 of 7) but not pressured (1 of 7). 

Discussion 

This paper presents a combined tDCS and VR-based intervention for the rehabilitation of severely 

affected upper limb function and evaluates its clinical use in a chronic post-stroke participant.  
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Our results confirmed the limited effects provided by a physical therapy program where the 

participant was included and evidenced a dramatic improvement of the upper limb function after 

the experimental intervention in both the body functions and activity, which was retained after 

coming back to the physical therapy intervention.  

 The improvement experimented by R.V. should be highlighted. First, he entered the 

experimental intervention with a chronicity of more than two years, a remarkable time after the 

6-month period that traditionally has been considered to encompass endogenous recovery 

mechanisms [35]. Second, he presented a severe hemiparesis of the upper limb that seemed to 

stall despite his participation in a physical therapy program. As previously stated, the motor 

condition of the upper limb is the most relevant prognostic factor for recovery function [6]. 

Finally, the improvements detected in both the body function and activity after the experimental 

intervention were clinically meaningful, which evidence promising clinical relevance of this 

intervention. Besides improved scores in the clinical scales, R.V. experimented changes that had 

noticeable effects on his daily life. 

 The improvement detected in this feasibility study are supported by previous research 

with post-stroke individuals. Existing literature not only shows efficacy of both techniques, VR 

[24,36,37] and tDCS [38–40], when applied in isolation, but also additional improvements when 

they are applied simultaneously [41], which has been argued to facilitate corticospinal excitability 

[21]. Comparable clinical improvement has been reported after similar interventions in both the 

body [41,42] and activity functions [42], and in both the subacute [41] and chronic phase after 

stroke [42]. Improvement experienced by R.V., however, should be highlighted, as the motor 

function of his UL was severely impaired, and this is the major predictor of poor UL recovery 

[6]. The provision of multisensory feedback in absence of movement but in response to voluntary 

actions triggered by each attempt to make a movement could have promoted the motor learning 

process [43], and facilitate the maintenance of gains after coming back to the previous program, 

which is also supported by previous VR interventions on UL function [24].  
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 Although the clinical effectiveness of the intervention must be confirmed in further 

studies, the progress detected in R.V. questions the existence of a rehabilitation plateau, and opens 

the possibility of new therapeutic options when the observed improvement is limited. 

Confirmation of these results, together with the good acceptance of the intervention, could support 

the potential of the experimental system as a therapeutic alternative in severe impairment of the 

UL function, where available options are scant and many have poor acceptance [44], limited 

effects [45], and high cognitive demands [14]. Future studies should also determine whether these 

changes were promoted by the intervention itself or by a change of intervention.  

Conclusion 

This paper describes a combined tDCS and VR-based paradigm for UL rehabilitation in individuals 

with restricted movements and a feasibility study with a chronic stroke survivor with severe 

hemiparesis. Preliminary results showed that the system was effective at improving the UL 

function, usable, and motivating. 
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Figures 

Fig 1. Interaction and stimulation paradigm 

The system enables interaction through a) gaze and/or b) muscular activity or movement, and 

provides c) visual, d) auditory, and e) vibritactile feedback, and f) transcranial direct current 

stimulation.  
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Fig 2. Location of the vibrators 

The vibration band is fixed so that the three coin vibrators are approximately located in the palmar 

side of the metacarpophalangeal joint of the thumb, index, and pinky fingers. 
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Fig 3. Virtual environment 

The virtual environment shows a) the users’ arms in front of an apple tree. The objective of the 

exercise is to pick the apples that appeared on a branch with the closer arm to the apple. If the 

intended movement to pick the apple is sufficient, the virtual environment displays an animation 

of b) the virtual hand moving towards the apple, c) grasping the apple, d) bringing it to the mouth, 

and e) biting the apple. 

 


