Skip to main content
Log in

Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F1-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Young, T., Evans, L., Finn, L., and Palta, M., Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 20(9):705–706, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Berry, R. B., Brooks, R., Gamaldo, C. E., Harding, S. M., Marcus, C., and Vaughn, B., AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications. Darien, IL: AASM, 2012.

    Google Scholar 

  3. Engleman, H. M., and Douglas, N. J., Sleep 4: Sleepiness, cognitive function, and quality of life in obstructive sleep apnoea/hypopnea syndrome. Thorax 59(7):618–622, 2004. https://doi.org/10.1136/thx.2003.015867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Vgontzas, A. N., Papanicolaou, D. A., Bixler, E. O., Hopper, K., Lotsikas, A., Lin, H.-M., Kales, A., and Chrousos, G. P., Sleep apnea and daytime sleepiness and fatigue: Relation to visceral obesity, insulin resistance, and hypercytokinemia. J. Clin. Endocrinol. Metab. 85(3):1151–1158, 2000.

    Article  PubMed  CAS  Google Scholar 

  5. Barbé, F., Pericas, J., Munoz, A., Findley, L., Anto, J. M., and Agusti, A. G., Automobile accidents in patients with sleep apnea syndrome: An epidemiological and mechanistic study. A J. Res. Crit. Care Med. 158(1):18–22, 1998.

    Article  Google Scholar 

  6. Bhattacharjee, R., Kheirandish-Gozal, L., Pillar, G., and Gozal, D., Cardiovascular complications of obstructive sleep apnea syndrome: Evidence from children. Prog. Cardiovasc. Dis. 51(5):416–433, 2009.

    Article  PubMed  Google Scholar 

  7. Lopez-Jimenez, F., Sert Kuniyoshi, F. H., Gami, A., and Somers, V. K., Obstructive sleep apnea: Implications for cardiac and vascular disease. Chest 133(3):793–804, 2008. https://doi.org/10.1378/chest.07-0800.

    Article  PubMed  Google Scholar 

  8. Penzel, T., The apnoea-ECG database. Comput. Cardiol. 27:255–258, 2000.

    Google Scholar 

  9. Penzel, T., McNames, J., de Chazal, P., Raymond, B., Murray, A., and Moody, G., Systematic comparison of different algorithms for apnoea detection based on ECG recordings. Med. Biol. Eng. Comput. 40(4):402–407, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Yildiz, A., Akın, M., and Poyraz, M., An expert system for automated recognition of patients with obstructive sleep apnea using electrocardiogram recordings. Expert Syst. Appl. 38(10):12880–12890, 2011.

    Article  Google Scholar 

  11. Marcos, J. V., Hornero, R., Alvarez, D., Aboy, M., and Del Campo, F., Automated prediction of the apnea-hypopnea index from nocturnal oximetry recordings. IEEE Trans. Biomed. Eng. 59(1):141–149, 2012. https://doi.org/10.1109/TBME.2011.2167971.

    Article  PubMed  Google Scholar 

  12. Park, J. U., Lee, H. K., Lee, J., Urtnasan, E., Kim, H., and Lee, K. J., Automatic classification of apnea/hypopnea events through sleep/wake states and severity of SDB from a pulse oximeter. Physiol. Meas. 36(9):2009–2025, 2015.

    Article  PubMed  Google Scholar 

  13. Koley, B. L., and Dey, D., Automatic detection of sleep apnea and hypopnea events from single channel measurement of respiration signal employing ensemble binary SVM classifiers. Measurement 46(7):2082–2092, 2013.

    Article  Google Scholar 

  14. Solà-Soler, J., Fiz, J. A., Morera, J., and Jané, R., Multiclass classification of subjects with sleep apnoea–hypopnoea syndrome through snoring analysis. Med. Eng. Phys. 34(9):1213–1220, 2012.

    Article  PubMed  Google Scholar 

  15. Erdenebayar, U., Park, J. U., Jeong, P., and Lee, K. J., Obstructive sleep apnea screening using a piezo-electric sensor. J. Korean Med. Sci. 32(6):893–899, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khandoker, A. H., Gubbi, J., and Palaniswami, M., Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings. EEE Trans Inf Technol Biomed 13(6):1057–1067, 2009. https://doi.org/10.1109/TITB.2009.2031639.

    Article  Google Scholar 

  17. Álvarez-Estévez, D., and Moret-Bonillo, V., Fuzzy reasoning used to detect apneic events in the sleep apnea-hypopnea syndrome. Expert Syst. Appl. 36(4):7778–7785, 2009. https://doi.org/10.1016/j.eswa.2008.11.043.

    Article  Google Scholar 

  18. Mendez, M. O., Corthout, J., Van Huffel, S., Matteucci, M., Penzel, T., Cerutti, S., and Bianchi, A. M., Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis. Physiol. Meas. 31(3):273–289, 2010. https://doi.org/10.1088/0967-3334/31/3/001.

    Article  PubMed  CAS  Google Scholar 

  19. Al-Angari, H. M., and Sahakian, A. V., Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier. IEEE Trans. Inf. Technol. Biomed. 16(3):463–468, 2012. https://doi.org/10.1109/TITB.2012.2185809.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O., Deep learning for computational biology. Mol. Syst. Biol. 12(7):878, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  21. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning. Nature 521(7553):436–444, 2015. https://doi.org/10.1038/nature14539.

    Article  PubMed  CAS  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G. E., Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process Syst. 1:1097–1105, 2012

  23. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., and Kingsbury, B., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29(6):82–97, 2012.

    Article  Google Scholar 

  24. Sutskever, I., Vinyals, O., Le, Q. V., Sequence to sequence learning with neural networks. Adv. Neural Inf. Process Syst. 2:3104–3112, 2014

  25. Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Perez, J. A., Lo, B., and Yang, G. Z., Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1):4–21, 2016. https://doi.org/10.1109/JBHI.2016.2636665.

    Article  PubMed  Google Scholar 

  26. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S., Deep learning for visual understanding: A review. Neurocomputing 187:27–48, 2016. https://doi.org/10.1016/j.neucom.2015.09.116.

    Article  Google Scholar 

  27. Kiranyaz, S., Ince, T., and Gabbouj, M., Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3):664–675, 2016.

    Article  PubMed  Google Scholar 

  28. Ioffe, S., Szegedy, C., Batch normalization: accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning 448–456, 2015.

  29. Rosasco, L., Vito, E. D., Caponnetto, A., Piana, M., and Verri, A., Are loss functions all the same? Neural Comput. 16(5):1063–1076, 2004.

    Article  PubMed  Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1929–1958, 2014.

    Google Scholar 

  31. Yu, X., Efe, M. O., and Kaynak, O., A general backpropagation algorithm for feedforward neural networks learning. IEEE Trans. Neural Netw. 13(1):251–254, 2002.

    Article  PubMed  Google Scholar 

  32. Chollet, F, Keras, 2015. http://keras.io/.

  33. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., and Kudlur, M., TensorFlow: A system for large-scale machine learning. OSDI 16:265–283, 2016.

    Google Scholar 

  34. Kingma, D. P., Ba, J., Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

  35. Chien, C., Batch size selection for the batch means method. Proceedings of the 26th Conference on Winter Simulation, Society for Computer Simulation International, 345–352, 1994.

  36. Xie, B., and Minn, H., Real-time sleep apnea detection by classifier combination. IEEE Trans. Inf. Technol. Biomed. 16(3):469–477, 2012. https://doi.org/10.1109/TITB.2012.2188299.

    Article  PubMed  Google Scholar 

  37. Jafari, A., Sleep apnoea detection from ECG using features extracted from reconstructed phase space and frequency domain. Biomed Signal Process Control 8(6):551–558, 2013.

    Article  Google Scholar 

  38. Chen, L., Zhang, X., and Song, C., An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram. IEEE Trans. Autom. Sci. Eng. 2:106–115, 2015.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education. It is a product of the Local Innovative Creative Human Resource Training Project (NRF-2014H1C1A1063845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Joung Lee.

Ethics declarations

Conflict of interest

All authors declares that he or she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

This article is part of the Topical Collection on Mobile & Wireless Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urtnasan, E., Park, JU., Joo, EY. et al. Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network. J Med Syst 42, 104 (2018). https://doi.org/10.1007/s10916-018-0963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-0963-0

Keywords

Navigation