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Abstract The urine sediment analysis of particles in

microscopic images can assist physicians in evaluating

patients with renal and urinary tract diseases. Manual

urine sediment examination is labor-intensive, subjec-

tive and time-consuming, and the traditional automatic

algorithms often extract the hand-crafted features for

recognition. Instead of using the hand-crafted features,

in this paper, we exploit CNN to learn features in an

end-to-end manner to recognize the urine particles. We

treat the urine particles recognition as object detec-

tion and exploit two state-of-the-art CNN-based object

detection methods, Faster R-CNN and SSD, as well as

their variants for urine particles recognition. We further

investigate different factors involving these CNN-based

object detection methods for urine particles recogni-

tion. We comprehensively evaluate these methods on

a dataset consisting of 5,376 annotated images corre-

sponding to 7 categories of urine particles, i.e., erythro-

cyte, leukocyte, epithelial cell, crystal, cast, mycete, ep-

ithelial nuclei, and obtain a best mAP (mean average

precision) of 84.1% while taking only 72 ms per image

on a NVIDIA Titan X GPU.

Keywords Urine Particles Recognition · CNN · Faster

R-CNN · SSD

1 Introduction

The urine sediment examination of biological particles

in microscopic images is one of the most commonly per-

formed vitro diagnostic screening tests in clinical lab-

oratories and it plays an important role in evaluating
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the kidney and genitourinary system and monitoring

body state. General indications for urinalysis include:

the possibility of urinary tract infection or urinary stone

formation; non-infectious renal or post-renal diseases;

in pregnant women and patients with diabetes mellitus

or metabolic states who may have proteinuria, glyco-

suria, ketosis or acidosis/alkalosis [1,2].

Traditionally, the trained technicians count the num-

ber of each kind of particles of urinary sediment by

visual inspection. The manual urine sediment examina-

tion works but is labor-intensive, time-consuming, sub-

jective, and operator-dependent in high-volume labora-

tories.

The issues involved in the manual analysis have mo-

tivated lots of automated methods for the analysis of

urine microscope images (e.g. [3,4,5,6,7,8]). As shown
in figure 1(a), almost all of them follow the multi-stage

pipeline, i.e., first generating candidate regions based

on segmentation and then extracting hand-crafted fea-

tures over regions for classification. Therefore, the per-

formance of these methods heavily depends on the ac-

curacy of the segmentation and the effectiveness of the

hand-crafted features. However, due to the complicated

characteristics of urinary images, the precise segmenta-

tion of the interested particles is quite difficult, or even

impossible, and the resulting hand-crafted region fea-

tures are often less discriminatory.

To avoid the precise segmentation stage and im-

prove the discriminability of features, as shown in fig-

ure 1(b), in this paper we exploit CNN to automatically

learn task-specific features and perform the urine parti-

cles recognition in an end-to-end manner. We treat the

urine particles recognition as object detection and ex-

ploit two well-known CNN-based object detection meth-

ods, Faster R-CNN [9] and SSD [10], along with their

variants including Multiple Scale Faster R-CNN (MS-
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(a) The traditional multi-stage pipeline

(b) The CNN-based end-to-end pipeline

Fig. 1: The pipelines for urinary particles recognition.

FRCNN) [11], Faster R-CNN with online hard exam-

ple mining [12] (OHEM-FRCNN) and Trimmed SSD

to accomplish it. We investigate different factors such

as training strategies, network structures, fine-tuning

tricks, data augmentation etc, to make these methods

more appropriate for urine particles recognition .

In this study, we exploringly apply both Faster R-

CNN and SSD approaches to the recognition of uri-

nary sediment particles. The end-to-end methods inte-

grate feature extraction, location and classification to

an unified convolutional network. Avoiding segmenta-

tion and hand-crafted features extraction, they can au-

tomatically learn urine-specific recognition task from

annotated micro-images.

We summarize our contributions as follows:

– We exploit Faster R-CNN [9] and SSD [10] for urine

sediment recognition. It is segmentation free and

can learn task-specific features in an end-to-end man-

ner.

– We investigate various factors to improve the per-

formance of Faster R-CNN [9] and its variants [11,

12] for urine particles recognition.

– We propose a scheme, Trimmed SSD, to prune the

network structure adopted in SSD [10] to achieve

better performance for urine sediment recognition.

– We obtain a best mAP of 84.1% while taking only

72 ms per image for 7 categories recognition of urine

sediment particles. Importantly, we also get a best

AP of 77.2% for cast particles, the most valuable

but most difficult to detect ingredients [13,14,17].

The remainder of this paper is organized as follows:

Section 2 reviews the research status of urine particles

recognition and the development of CNN-based meth-

ods for generic object detection. Section 3 describes

the detection architectures applied to urine particles

recognition, i.e., Faster R-CNN, SSD and their variants.

Section 4 details the urinalysis database organization

and provides deep analysis of extensive experiments for

urine particle recognition. Section 5 shows more exper-

imental comparisons intuitively. Section 6 presents our

final conclusions.

2 Related work

2.1 Urine particles recognition

The recognition of urinary sediment particles has been

extensively studied following the traditional multi-stage

pipeline (Fig 1(a)) and a variety of approaches can be

adopted in each stage.

In [3], Rabznto et al. first obtained patches of in-

terest by a detection algorithm, and then extracted in-

variant features based on “local jets” [15]. Classifica-

tion performed with a mixture of Gaussians classifier

[16]. Although the system presented reliable recogni-

tion results on a pollen dataset, more accurate location

for interest patches needed to be improved. Liang et

al. [4] adopted a two-step process (the first location

step and the second tuning step) to segment particles’

contour. After features extraction by a novel local jet

context feature scheme, they proposed a two-tier clas-

sification strategy to better reduce the false positive

rate caused by impurity and poor focused regions. Shen

et al. [5] used AdaBoost to select a little part typical
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Harr features for SVM classification, and improved sys-

tem speed via cascade accelerating algorithm. Zhou et

al. [17] demonstrated an easy-implemented automatic

urinalysis system employing a SVM classifier to distin-

guish casts from other particles. In paper [7], a new

technique based on the Adaptive Discrete Wavelet En-

tropy Energy for adaptive feature extraction was pro-

posed, which follows the image preprocessing stage in-

cluding noise reduction, contrast enhancement and seg-

mentation. In classification, the Artificial Neural Net-

work (ANN) classifier was selected for the best per-

formance. Li et al. [8] mainly focused on the texture

feature extraction of the segmented urinary particles.

After the adhesive particles separation by watershed

algorithm, the authors combined the Gabor filter with

the scattering transform for robust feature description,

which not only keeps invariant of scaling, rotation and

translation but also shows good performance in the

course of SVM classification.

The conventional recognition model works for auto-

mated urinalysis, but importantly, segmentation, fea-

ture extraction and classification all need to be care-

fully designed. In addition, the complicated character-

istics of urine micro-images also bring more challenges

to this task. Therefore, there is an increasing demand

for better solutions relying more on automatic learning

and less on hand-designed heuristics.

2.2 CNN-based object detection

Since the revival of deep Convolutional Neural Net-

works (CNNs) [18,19] with prominent performance, the

state-of-the-art methods in image classification and ob-

ject detection have all used deep learning techniques.

Specially in generic object detection, there are two es-

tablished series as representatives of deep learning meth-

ods: the Overfeat [20] series based on sliding windows

and the R-CNN [21] series based on region proposals

classification.

On the one hand, since Girshick et al. proposed R-

CNN [21] combing region proposals with CNNs, the

method has attracted wide attentions and has been im-

proved in a variety of ways. First, in order to mitigate

the time-consuming process of features computation,

SPP-net [22] introduces a spatial pyramid pooling layer

that can flexibly handle variable-size inputs. Avoiding

repeatedly computing the convolutional features (com-

pute only once per image), it accelerates R-CNN signif-

icantly. Instead of a spatial pyramid pooling layer, then

Girshick extended SPP-net by a ROI pooling layer, and

introduced a multi-task loss, namely, the joint classi-

fication loss and bounding box regression loss. With

the two improvements, the framework can fine-tune all

layers in an end-to-end manner, which comparatively

speeds up the stages of training and testing, so called

as Fast R-CNN [23].

Until now, compelling speed and accuracy have been

achieved. However, when considering the computation

time spent on region proposals (e.g., Selective Search

[24]), this process immediately becomes the bottleneck

of object detection systems. Discarding the engineered

low-level features used in most popular methods, sev-

eral papers (like MultiBox [25,26]) generate region pro-

posals directly from a auxiliary deep neural network.

Further, in Faster R-CNN [9], Ren et al. merged a re-

gion proposal network (RPN) and Fast R-CNN into

a single network by sharing their full-image convolu-

tional features, thus producing small marginal cost for

region proposals generation. Combining different net-

works, Faster R-CNN can detect general objects very

accurately at near real-time rate.

Faster R-CNN is a powerful baseline system and is

flexible to many applications. Although Region-based

Fully Convolutional Network (R-FCN) [27] has been

proposed recently, Faster R-CNN is still very prevalent

in the region-based family. In addition, there are several

variants of Faster R-CNN for domain-specific detection.

For example, aiming at the detections of driver’s cell-

phone usage and hands on steering wheel, Le et al. pre-

sented a multiple scale Faster R-CNN (MS-FRCNN)

[11], which mainly addresses low precision problem to

small object detection. Also Zhang et al. in [28] im-

proved unsatisfactory accuracy to small instances by

pooling finer features from shallower layers and increas-

ing feature maps size via the “à trous” trick.

On the other hand, skipping the proposal step, the

OverFeat [20] series directly predicts confidences and

bounding boxes accross multiple categories through a

sliding window mechanism. Initially, Overfeat [20] si-

multaneously run classifier and regressor networks at

each spatial location and scale for confidences and bound-

ing boxes prediction, and adopts a greedy merge strat-

egy to complete final detections. But Overfeat is a dis-

joint system. So, YOLO [29] frames object detection

as a single regression problem and predicts multiple

bounding boxes and class probabilities directly from

full image in one evaluation. Both OverFeat and YOLO

approaches only use the topmost feature map to detect

all categories, which leads to unsatisfactory detection

results. In order to flexibly handle various-size objects,

SSD [10] sets a set of default boxes over different aspect

ratios and scales at each feature map location, and com-

bines all predictions from multiple feature maps with

different resolutions. Therefore, SSD has achieved state-

of-the-art performance in the OverFeat series. But SSD

has a notable drawback. It foregoes reusing the higher-
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(a) Faster R-CNN (b) MS-FRCNN (c) OHEM-FRCNN

Fig. 2: The architectures of Faster R-CNN, MS-FRCNN and OHEM-FRCNN.

resolution maps of the feature hierarchy, just as pointed

out in Feature Pyramid Network(FPN) [30]. In the fol-

lowing experiments section, we also demonstrate the

importance of these finer features for small objects de-

tection, such as erythrocyte, leukocyte and epithelial

nuclei.

3 Methods

In this paper, we employ two well-known CNN-based

object detection methods, Faster RCNN [9] and SSD

[10], to urine particles recognition, and further exploit

several structural variants, namely, Multiple Scale Faster

R-CNN (MS-FRCNN) [11], Faster R-CNN with online

hard example mining (OHEM-FRCNN) and Trimmed

SSD.

3.1 Faster R-CNN and its variants

Faster R-CNN [9] is a single unified network which in-

tegrates a fully convolutional region proposal generator

(RPN) with a fast region-based object detector (Fast

R-CNN) [23]. As shown in figure 2(a), the deep detec-

tion framework also can be described as the pipeline

of “shareable CNN feature extraction + region pro-

posal generation + region classification and regression”.

Moreover, to predict objects across multiple scales and

aspect ratios, the authors in paper [9] designed a pyra-

mid of anchors creatively, which is a key component for

sharing features without extra cost. Therefore, Faster

R-CNN is a segmentation free method without using

hand-crafted features and successful for general object

detection.

MS-FRCNN [11] is a follow-up improvement based

on Faster R-CNN to detect whether driver’s hands are

on a steering wheel or not and if a cell-phone is be-

ing used. It keeps Region Proposal Network (RPN) un-

changed and builds a more sophisticated network for

Fast R-CNN detector by a combination of both global

context and local appearance features. As figure 2(b)

shows, each object proposal receives three feature ten-

sors through ROI pooling from the last three convo-

lutional layers. After L2 normalization to each tensor,

outputs are concatenated and compressed to maintain

the same size as the original architecture.

OHEM-FRCNN is a combination of online hard

example mining (OHEM) [12] and Faster R-CNN [9].

OHEM [12] is a novel bootstrapping for modern CNN-

based object detectors trained purely online with SGD,

like Fast R-CNN [23]. Instead of a sampled mini-batch

[9], it eliminates several heuristics and hyperparameters

in common use and selects automatically hard examples

by loss. Although OHEM can be applied to any region-

based ConvNet detector, no combination of OHEM and

Faster R-CNN has been published yet. As figure 2(c)

shows, in this paper we apply OHEM to Faster R-CNN

for urine particles recognition. For each iteration, given

the feature map from shareable convolutional network

and ROIs from RPN, the read-only ROI network per-

forms a forward pass and computes loss for all input

ROIs. Then the regular ROI network computes forward

and backward passes only for hard examples selected by

hard ROI sampling module according to a distribution

that favors diverse, high loss candidates.

3.2 SSD and its variants

SSD [10], a single-shot multibox detector for multiple

categories, can be decomposed into a truncated base

network (usually a VGG-16 net) and several auxiliary

convolutional layers used as feature maps and predic-
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Fig. 3: The architecture of SSD.

tors. Unlike Faster R-CNN [9], SSD increases detection

speed by removing the region proposal generation and

the subsequent pixel or feature resampling stages. Un-

like YOLO [29], it improves detection quality by ap-

plying a set of small convolutional filters to multiple

feature maps to predict confidences and boxes offsets

for various-size categories (like figure 3 shows).

Trimmed SSD is a simplified version of the orig-

inal SSD model [10]. As figure 3 shows, from bottom

to top, original SSD selects conv4 3, fc7 (convolutional

layer), conv6 2, conv7 2, conv8 2, conv9 2 and pool6

as feature maps to produce confidences and locations.

If we directly transfer it to urine particles recognition

with only 7 categories, it may produce a large number

of redundant prediction results interfering with the fi-

nal detection performance. And the framework is too

complicated to perfectly fit our dataset. For simplifica-

tion, we attempt to remove several top convolutional

layers from the auxiliary network of SSD, which leads

to the trimmed SSD.

When applying above methods to urine particles recog-

nition, we effectively adopt the mechanism of deep trans-

fer learning, and conduct extensive experimental analy-

sis to demonstrate the impact of various factors. Specif-

ically, in the course of Faster R-CNN being used, we

explore different training strategies, network structures

and anchor scales, and carry out data augmentation

to further increase training samples. Also, when using

SSD, we adjust several parameters, including the scales

of default boxes (similar to the Faster R-CNN anchors)

and the size of input images to boost small objects de-

tection.

4 Experiments

4.1 Dataset organization

In order to perform our study, we first establish the

urinalysis micro-images database that is marked with

ground truth boxes by clinical experts. All 6,804 an-

notated color images have a size of 800 x 600, which

include 8 categories of urinary sediment particles, i.e.,

erythrocyte (eryth), leukocyte (leuko), epithelial cell

(epith), crystal (cryst), cast, mycete, epithelial nuclei

(epithn) and noise. Specifically, eryth, leuko, crystal,

mycete and epithn are only annotated at high-power

field, epith and cast only at low-power field. Figure 4

shows 7 categories of urinary sediment particles from

our database, each of which includes many subcate-

gories with various shapes.

In fact, our 6,804 annotated images have a total of

273,718 ground truths, where meaningless noise occu-

pies 230,919 annotations, up to eight-four percent. We

remove images only including noise and finally get 5,376

useful images, more concretely, which contain (ground

truth boxes) 21,815 for eryth, 6,169 for leuko, 6,175 for

epith, 1,644 for cryst, 3,663 for cast, 2,083 for mycete

and 687 for epithn. From the final 5,376 images, we

randomly select 268 images making up 1/20 as test set,

and the others as trainval set, where train set makes up

5/6. Figure 5 demonstrates the details of dataset orga-

nization and categories distribution. The top pie chart

shows how 5,376 images are organized into train/val/test

sets. The bottom bar graphs display detailed objects

distribution for the imbalanced database.

4.2 Experimental analysis

Our experiments perform on a 64 bits Ubuntu 14.04.5

computer with CPU Intel(R) Core(TM) i7-5960X CPU@

3.00GHz, NVIDIA Corporation GM200 [GeForce GTX

TITAN X] and Python 2.7.6. In training stage, we adopt

the transfer learning mechanism: first initialize CNN

frameworks with models pre-trained on ImageNet dataset,
then fine tune them using different strategies. By de-

fault, we still use PASCAL-style Average Precision (AP)

at a single IoU threshold of 0.5 and mean Average Pre-

cision (mAP) to evaluate our detection results. Lots of

significant test results have been obtained via various

kinds of training trials. Details are listed below.

4.2.1 Urine particles recognition based on Faster

R-CNN

When training Faster R-CNN, we fine-tune pre-trained

models with SGD for 70k mini-batch iterations (un-

less specified otherwise), with a mini-batch size of 128

on 1 GPU, a momentum of 0.9 and a weight decay of

0.0005. We start from a learning rate 0.001, and de-

crease it by 1/10 after 50k iterations. But fine-tuning

PVANet [31] adopts a learning rate policy of plateau:

0.003 base learning rate, 0.3165 gamma and a different

weight decay of 0.0002.
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Fig. 4: Selected samples of urinary sediment particle.

79%
train

16%
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Fig. 5: Dataset organization and categories distribution.

Different training strategies. As all know, there are

two training solutions in the released Faster R-CNN

python code, 4-step alternating training and approxi-

mate joint training (also called as end2end training). In

order to select one more effective and efficient solution

for the following networks training, we design this ex-

periment based on small ZF [32] net and medium VGG-

16 [33] net. By default, the training parameters of two

networks remain the same with the released code. Table

1 shows that adopting the strategy of approximate joint

training takes less time, but yields higher mAP (nearly

the same accuracy on VGG-16 net), so the next series

of experiments all adopt the end2end training solution.

Different networks. In this part, we mainly use 4

networks pre-trained on ImageNet for classification to

initialize our detection model: ZF net [32] proposed

by Zeiler and Fergus is a small and fast convolutional

version; VGG-16 net [33], a medium version, proposed

by Simonyan and Zisserman has 16 shareable convolu-

tional layers; the deeper ResNet [34], including ResNet-

50 and ResNet-101, introduces a residual learning frame-

work to ease the optimization of training stage; and

the latest PVANet [31] has less channels and more lay-

ers. We fine tune all convolutional layers of ZF net

and PVANet, the conv3 1 and up of VGG-16 net and

ResNet.

From ZF, VGG-16 to ResNet-50, table 2 roughly

demonstrates that as nets go deeper, we get higher de-

tection accuracy and more testing time per image. In

anchor scales of { 642, 1282, 2562, 5122 }, the mAPs

fluctuate, which mostly is a trade-off between stronger

semantics and coarser resolutions. Moreover, from ResNet-

50 to ResNet-101, mAPs are nearly unchanged. we due

it to the complexity of our dataset. Just as paper [31]

claims the deep but lightweight PVANet can achieve

solid detection results while minimizing computation

cost, we indeed obtain the best performance on our

urine sediment recognition task.

Different anchor scales. Unlike generic objects in

camera images, the particles of urinary sediment vary

widely in their shapes, sizes and numbers. Moreover,

some urinary micro-images include a lot of small objects

(like erythrocyte and leukocyte), so as many anchors as

possible should be covered in our experiment, especially

small scales.

In this part, we compare the detection results using

different anchor scales. First, for networks of ZF, VGG-

16 and ResNet we all choose the default settings (the

anchor scales of { 1282, 2562, 5122 } and the aspect

ratios of {1:1, 1:2, 2:1}) as benchmarks. Then, keep as-

pect ratios unchanged and gradually increase anchors

with smaller scales (i.e., 642 and 322). Overall, table 2

shows us that more anchors yield higher mAP. In de-

tail, increasing anchor scales { 642, 1282, 2562, 5122 }
to { 322, 642, 1282, 2562, 5122 } can not achieve bet-

ter performance on both ZF net and VGG-16 net. It

mainly due to the capacity of networks becoming satu-

rated because we do get an accuracy boost when using

ResNet-50 and ResNet-101. Further, we delete the scale

of 5122 as comparison only using ZF and VGG-16 nets.

On ZF net, the scales of {642, 1282, 2562} has the same

9 anchors with { 1282, 2562, 5122 }, but outperforms by

3.4% mAP. Similarly, on VGG-16 net, increases by 0.5%

mAP. It indicates that most particles in our dataset are

small objects and the small anchor scales are indispens-

able. In addition, we note that deeper networks take

more test time, but anchor scales have little impact on

detection cost. Finally, it’s worth mentioning that the

PVANet with best performance takes less test time de-

spite deeper layers, partly because of more anchor scales

(5 x 5) but thin structure.

Data augmentation. Commonly, adopting data aug-
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net training strategy training time(h) mAP

ZF

4-step alternating training 5.33 0.694

end2end training 4.6 0.723

VGG-16

4-step alternating training 12.23 0.756

end2end training 11.68 0.757

Table 1: Training time and mAP by different training solutions. Experiments perform on the ZF and VGG-16

networks, and keep the default settings from the released python code, in which the iteration parameters of 4-step

alternating training is [80,000 40,000 80,000 40,000].

net anchor scales mAP eryth leuko epith cryst cast mycete epithn
test time
(sec/img)

ZF

{1282, 2562, 5122} 0.723 0.607 0.749 0.845 0.856 0.658 0.781 0.566 0.044

{642, 1282, 2562, 5122} 0.796 0.853 0.809 0.855 0.858 0.671 0.861 0.665 0.045

{322, 642, 1282, 2562, 5122} 0.779 0.859 0.805 0.854 0.847 0.657 0.863 0.57 0.046

{642, 1282, 2562} 0.757 0.748 0.823 0.846 0.85 0.642 0.82 0.568 0.044

VGG-16

{1282, 2562, 5122} 0.757 0.599 0.772 0.874 0.794 0.708 0.874 0.679 0.102

{642, 1282, 2562, 5122} 0.802 0.842 0.818 0.868 0.873 0.716 0.877 0.621 0.104

{322, 642, 1282, 2562, 5122} 0.795 0.854 0.825 0.857 0.851 0.724 0.876 0.576 0.104

{642, 1282, 2562} 0.762 0.743 0.822 0.863 0.759 0.712 0.88 0.558 0.104

ResNet-50

{1282, 2562, 5122} 0.77 0.613 0.831 0.853 0.852 0.757 0.873 0.615 0.219

{642, 1282, 2562, 5122} 0.784 0.761 0.824 0.86 0.822 0.768 0.859 0.595 0.219

{322, 642, 1282, 2562, 5122} 0.804 0.876 0.812 0.86 0.854 0.747 0.874 0.605 0.22

ResNet-101

{1282, 2562, 5122} 0.761 0.606 0.83 0.864 0.802 0.769 0.875 0.578 0.268

{642, 1282, 2562, 5122} 0.773 0.841 0.814 0.848 0.852 0.749 0.863 0.446 0.267

{322, 642, 1282, 2562, 5122} 0.801 0.872 0.809 0.839 0.852 0.772 0.883 0.581 0.268

PVANet {482, 962, 1442, 2562, 5122} 0.841 0.884 0.843 0.871 0.877 0.765 0.890 0.760 0.072

Table 2: Comparisons of detection results using different networks and different anchor scales. By default, we keep

anchor ratios unchanged: only PVANet sets it to {0.5, 0.667, 1.0, 1.5, 2.0}, all the others set {2:1, 1:1, 1:2}. The

last column is an approximate time of net forward-propagating when test an image. And the last two rows are

test results after 60k mini-batch iterations.

mentation in deep learning can expand training sam-

ples, avoid over-fitting and improve test accuracy, espe-

cially for small-scale training sets. Faster R-CNN also

adopts a horizontal flip to augment training set. Em-

pirically, we append a vertical flip to further expand

training data. As comparison, we remove all data aug-

mentations and only use original data in training-stage.

Table 3 shows us that adopting horizontal flip or verti-

cal flip alone does increase mAPs. However, there is no

benefit to further append vertical flip after a horizontal

flip.

MS-FRCNN. Generally, Faster R-CNN could obtain

excellent performance on several natural image bench-

marks [35,36,37] that hold objects almost occupying

the majority of an image. But as mentioned in the pre-

vious section, most objects in urine sediment micro-

images are small and low-resolution. Faster R-CNN only

uses one higher convolutional layer as feature map, which

hardly detects some small objects because of bigger

stride and larger receptive field size. Therefore, inspired

by [38] that combines semantic information from a deep,

coarse layer with appearance information from a shal-

low, fine layer for accurate and detailed segmentations,

there have been proposed several multi-scale approaches

[39,11,10,40,41,31], so that the size of receptive field

could match various-size objects, especially small in-

stances.

In order to validate the effectiveness of multi-scale

methods for urine particles recognition, we conduct a

series of experiments based on the MS-FRCNN archi-

tecture. The final results are shown in table 4. Over-

all, MS-FRCNN takes more test time per image and

the mAPs are worse a bit than original Faster R-CNN

(FRCNN). But we can get an interesting observation

from the table, as the number of anchors increases, the

final gap between precisions becomes smaller (a differ-

ence of 0.4%). In addition, the accuracy of small ob-

jects (i.e., eryth, leuko, and epithn) is more superior

than no multi-scale. It is a mention that the PVANet

also contains a multi-scale structure [40], but different

from MS-FRCNN used in this part. We argue that the

excellent performance of PVNet partly benefits from it.

OHEM-FRCNN. We choose Faster R-CNN as a base

object detector and embed the novel bootstrapping tech-

nique, online hard example mining (OHEM). As re-

ported in table 5, OHEM improves the mAP of Faster

R-CNN (FRCNN) from 79.5% to 81% while taking ap-

proximately the same test time. Specifically, all cate-

gories except leukocyte yield better APs, where ery-

throcyte, cast and epithelial nuclei benefit more. In ad-
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flip types mAP eryth leuko epith cryst cast mycete epithn

no flip 0.748 0.865 0.819 0.826 0.764 0.582 0.844 0.533

only horizontal flip 0.779 0.859 0.805 0.854 0.847 0.657 0.863 0.57

only verticle flip 0.767 0.853 0.827 0.855 0.879 0.647 0.858 0.448

horizontal and verticle flip 0.742 0.756 0.795 0.836 0.771 0.677 0.763 0.599

Table 3: The effect of data augmentation on test precision. The network is ZF using a anchor scales of

{322, 642, 1282, 2562, 5122} and a aspect ratios of {1:1, 1:2, 2:1}.

method anchor scales mAP eryth leuko epith cryst cast mycete epithn
test time
(sec/img)

FRCNN {1282, 2562, 5122} 0.723 0.607 0.749 0.845 0.856 0.658 0.781 0.566 0.044

MS-FRCNN {1282, 2562, 5122} 0.712 0.601 0.747 0.817 0.822 0.61 0.781 0.607 0.075

FRCNN {642, 1282, 2562, 5122} 0.796 0.853 0.809 0.855 0.858 0.671 0.861 0.665 0.045

MS-FRCNN {642, 1282, 2562, 5122} 0.756 0.845 0.811 0.824 0.835 0.639 0.815 0.512 0.08

FRCNN {322, 642, 1282, 2562, 5122} 0.779 0.859 0.805 0.854 0.847 0.657 0.863 0.57 0.046

MS-FRCNN {322, 642, 1282, 2562, 5122} 0.775 0.867 0.81 0.836 0.809 0.646 0.871 0.589 0.077

Table 4: Comparisons on ZF net using different anchor scales when adding a multi-scale structure from MS-FRCNN.

dition, the gains from OHEM can be increased by en-

larging and complicating training set.

4.2.2 Urine particles recognition based on SSD

When training SSD, we fine-tune a pre-trained model

with SGD for 120k mini-batch iterations, with a mini-

batch size of 32 on 1 GPU (a mini-batch size of 16

on 2 GPU during SSD500 training), a momentum of

0.9 and a weight decay of 0.0005. By default, we adopt

the multistep learning rate policy with a base learning

rate of 0.001 (0.01 when use batch normalization for

all newly added layers), a stepvalue of [80,000, 10,000,

120,000] and a gamma of 0.1.

Different scales of the default boxes. We have

known that SSD discretizes the output space of bound-

ing boxes into a set of default boxes over different aspect

ratios and scales at each feature map cell. In order to

relate these default boxes from different feature maps

to corresponding receptive fields, the authors in paper

[10] designed a scale strategy that regularly but roughly

responses specific boxes to specific areas of the image,

where the lowest feature map has a minimum scale of

Smin and the highest feature map has a maximum scale

of Smax, and all other feature maps in between are reg-

ularly scattered (more details, please refer to the paper

[10]).

Considering lots of small particles in urine sediment

images, we adjust empirically the scales of default boxes

when training SSD300. From experimental results in

table 6, we can see that decreasing the minimum scale

of 0.2 to 0.1 (the maximum scale of 0.9 remains un-

changed.) increases mAP by 2% in which the AP of

cast increases by 14.1%.

Trimmed SSD. In order to reduce the complexity of

the original SSD model and avert over-fitting on the

small-scale urinalysis database, we take a pruning strat-

egy, Trimmed SSD. Specifically, in this experiment we

remove conv7, conv8, and conv9 layers of SSD300. The

penultimate row in table 6 shows us that deleting the

conv7, conv8, and conv9 layers does yield a better mAP

(a boost of 4.1%), but no better speed.

Different input sizes. Generally, increasing the size

of input images can improve detection accuracy, espe-

cially to small objects. Imitating the paper [10], we also

increase the input size from 300 x 300 to 500 x 500. Here

we train SSD500 only once, with a minimum scale of

0.1 and a maximum scale of 0.9. Unfortunately, we just

obtain a poor 65.8% mAP (the last row in table 6),

because of decreasing the batch size setting from 32 to

16 to run this model in limited GPU resources. We ar-

gue that better results can be achieved if increase the

setting of batch size.

So far, there is still much room for SSD improvement.

Given the boost of Trimmed SSD, we have glimpsed the

structural deficiencies of original SSD model, but lack

more sophisticated analysis for further research. Also,

we can design a more suitable default boxes distribution

over different scales and aspect ratios to fit the urinal-

ysis database. They are interesting and open questions

for us to future study.

The above experimental results clearly make out that

Faster R-CNN outperforms SSD in precision (Figure 8

also shows this in appendix), but the latter is faster. In

view of the importance of accuracy in medical applica-
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method mAP eryth leuko epith cryst cast mycete epithn
test time
(sec/img)

FRCNN 0.795 0.854 0.825 0.857 0.851 0.724 0.876 0.576 0.104
OHEM-FRCNN 0.810 0.871 0.807 0.866 0.859 0.755 0.877 0.633 0.115

Table 5: Comparisons between FRCNN and OHEM-FRCNN on VGG-16 net using the same anchor scales of

{322, 642, 1282, 2562, 5122}.

SSD model Smin Smax mAP eryth leuko epith cryst cast mycete epithn
test time
(sec/img)

SSD300
0.2 0.9 0.732 0.841 0.764 0.828 0.745 0.559 0.797 0.587 0.021
0.1 0.9 0.752 0.766 0.741 0.838 0.782 0.7 0.839 0.596 0.021

SSD300∗ 0.2 0.9 0.773 0.846 0.748 0.837 0.772 0.721 0.85 0.638 0.021

SSD500 0.1 0.9 0.658 0.557 0.609 0.834 0.632 0.669 0.792 0.512 0.047

Table 6: Detection results using SSD model, where SSD300 has an input size of 300 x 300, SSD500 increases it

to 500 x 500, and the penultimate row, SSD300∗, represents a Trimmed SSD removing conv7, conv8, and conv9

layers.

tions, Faster R-CNN will be an priority for automated

urinalysis system.

5 Adding bells & whistles

As mentioned, Faster R-CNN exceeds SSD in detec-

tion accuracy, especially on PVANet with fast detection

speed by a significant margin. In structure, Faster R-

CNN mainly contains a region proposal network (RPN)

than SSD for ROIs generation. In this section, we study

in detail the impact of several factors to region pro-

posal generation while combining above experiments.

Further, we also compare PVANet against VGG-16 on

specific detection performances more intuitively.

5.1 Analysis for region proposal generation

Anchor scales. In this part, we provide analysis of

anchor scales affection to object proposals on VGG-16

net. The curve of recall for anchor scales at different

proposal numbers is plotted in figure 6(a). Correspond-

ingly, the related detection performances are shown in

table 2 (the VGG-16 module). Figure 6(a) displays,

from the default anchor scales { 1282, 2562, 5122 },
the proposals recall increases gradually while adding

smaller scales (i.e., 642 and 322), and the scales of {
642, 1282, 2562, 5122 } outperforms the scales of { 1282,

2562, 5122 } by a significant margin, closed to the scales

of { 642, 1282, 2562, 5122 }. The results are consistent

with the detection accuracy with respect to mAP &

APs, and indicates two keys about anchor scales: (1)

the more the better. (2) the smaller the superior. Rea-

sonable design of anchor scales benefits ROIs generation

and final detection.

Networks. Table 2 has fully demonstrated the im-

pact of different networks to detection performances

with respect to accuracy and speed. Treating RPN as

a class-agnostic object detector, we further investigate

different networks in terms of proposals quality. Figure

6(b), plotting recall versus number of proposals with a

loose IoU of 0.5, shows little differences between sev-

eral networks when adopting the best anchor scales of

{ 322, 642, 1282, 2562, 5122 }. For higher IoU thresh-

olds, shown in figure 6(c), the recall of PVANet drops

faster than other networks. Given its superior detec-

tion performances, PVANet must obtain more compen-

sation from the latter stage.

5.2 PVANet versus VGG-16

Although PVANet displays under-performances for re-

gion proposal generation, eventually it achieves very

prominent detection results, a mAP of 84.1% shown
in table 2. By inference, we owe it to the latter Fast

R-CNN detector. In this part, we compare PVANet

against VGG-16 to verify the inference.

Figure 7 shows curves of precision-to-recall sepa-

rately on PVANet and VGG-16 networks. In contrast,

PVANet maintains higher precisions stably, as recalls

increases. The precisions of VGG-16 net drop sharply

in the end. For detections of cast and epithelial nuclei,

PVANet also performs better than VGG-16 net.

6 Conclusions

In this paper, we treat the urine particles recognition

as object detection and select two well-known CNN-

based approaches, Faster R-CNN and SSD, as base de-

tection framework. They are segmentation free and can

learn task-specific features in an end-to-end manner.

When applying Faster R-CNN, SSD, and their vari-

ants to urine particles recognition, we effectively adopt



x Rui Kang et al.

0 1 3 5 10 50 100 300 600 800
number of proposal

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

{
322, 642, 1282, 2562, 5122

}{
642, 1282, 2562, 5122

}{
1282, 2562, 5122

}{
642, 1282, 2562

}

(a)

0 1 3 5 10 50 100 300 600 800
number of proposal

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

ZF

VGG-16

ResNet-50

PVANet

(b)

0.5 0.6 0.7 0.8 0.9 1
IoU

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

ZF

VGG-16

ResNet-50

PVANet

(c)

Fig. 6: Analysis for region proposal generation on urinalysis database. (a) Recall versus number of proposal for

different anchor scales using VGG-16 with a fixed IoU of 0.5. (b) Recall versus number of proposal for different

networks with a fixed IoU of 0.5. (c) Recall versus IoU threshold for different networks with a fixed number of

proposal (600).
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Fig. 7: Precision versus recall. (a) VGG-16 net with a anchor scales of { 322, 642, 1282, 2562, 5122 } and a mAP

of 79.5%. (b) PVANet with a mAP of 84.1%.

the mechanism of deep transfer learning. Moreover, we

conduct extensive experimental analysis to demonstrate

the impact of various factors, including training strate-

gies, network structures, anchor scales, and so on. Af-

ter a variety of experiments, we obtain a best mAP of

84.1% with a test time of 70 ms per image while using

Faster R-CNN on PVANet. We believe the result is very

meaningful for automatic urine sediment examination

and the experimental analysis is instructive for other

researchers. Of course, for urine particles recognition,

there is still a lot of room to further improve and it will

be an interesting future direction for us.
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Appendix

(a) annotations (b) ZF (c) VGG-16

(d) ResNet-50 (e) PVANet (f) SSD300∗

I : detection results of erythrocyte

(a) annotations (b) ZF (c) VGG-16

(d) ResNet-50 (e) PVANet (f) SSD300∗

II : detection results of leukocyte
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(a) annotations (b) ZF (c) VGG-16

(d) ResNet-50 (e) PVANet (f) SSD300∗

III : detection results of crystal

(a) annotations (b) ZF (c) VGG-16

(d) ResNet-50 (e) PVANet (f) SSD300∗

IV : detection results of mycete

(a) annotations (b) ZF (c) VGG-16

(d) ResNet-50 (e) PVANet (f) SSD300∗

V : detection results of epithelial nuclei
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(a) annotations (b) ZF (c) VGG-16

(d) ResNet-50 (e) PVANet (f) SSD300∗

VI : detection results of epithelial cell

(a) annotations (b) ZF (c) VGG-16

(d) ResNet-50 (e) PVANet (f) SSD300∗

VII : detection results of cast

Fig. 8: Selected detection examples of urine particles on urinalysis test set. We show detections with scores higher
than 0.7. All examples are divided into 7 groups, where 5 groups are at high-power field (i.e., erythrocyte, leukocyte,
crystal, mycete, epithelial nuclei ) and the other 2 groups at low-power field (i.e., epithelial cell, cast ). In each group:
(a) shows original image with ground truth boxes; (b-d) are Faster R-CNN detections separately on ZF, VGG-16 and
ResNet-50 networks with a anchor scales of {322, 642, 1282, 2562, 5122}; (e) shows detection results on PVANet; (f)
shows detection results on SSD300∗ model. For the ground truths and detection boxes, different categories use only
different colors: eryth (red), leuko (black), epith (green), crystal (magenta), cast (cyan), mycete (yellow). As shown
in this figure, the performance of SSD is inferior to Faster R-CNN, and it misses a lot of small objects.
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