Skip to main content

Advertisement

Log in

Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Computational techniques for foreseeing drug-disease associations by means of incorporating gene expression as well as biological network give high intuitions to the composite associations amongst targets, drugs, disease genes in addition to the diseases at a system level. Hepatocellular Carcinoma (HCC) is a malevolent tumor containing a greater rate of sickness as well as mortality. In the present work, an Integrative framework is presented with the aim of resolving this problem, for identifying new Drugs for HCC dependent upon Multi-Source Random Walk (PD-MRW), in which score the complete drugs by means of building the drug-drug similarity network. On the other hand, the collection of clinical phenotypes as well as drug side effects in combination with patient-specific genetic info. As a result, the formation of disease-drug networks that denotes the prescriptions, which are allotted to treat those diseases that are not concentrated by means of PD-MRW model. With the aim of overcoming this issue, this research offers an integrative framework for foreseeing new drugs as well as diseases for HCC dependent upon Multi-Source Simulated Annealing based Random Walk (PDD-MSSARW). Primarily, build a Gene-Gene Weighted Interaction Network (GWIN), dependent upon the gene expression as well as protein interaction network. After that, construct a drug-drug similarity network, dependent upon multi-source random walk in GWIN, disease-drug similarity network with the help of Similarity Weighted Bipartite Graph Network (SWBGN) that is build up in which the nodes are drugs as well as association among one node to another node that explains the disease diagnoses. Lastly, dependent upon the known drugs for HCC, score the entire drugs in the similarity networks. The sturdiness of the likelihoods, their overlap with those stated in Comparative Toxicogenomics Database (CTD) as well as kinds of literature, and their enhanced KEGG pathway illustrate PDD-MSSARW method be capable of efficiently find out novel drug signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DiMasi, J., Hansen, R., and Grabowski, H., The price of innovation: New estimates of drug development costs. J. Health Econ. 22(2):151–185, 2003.

    Article  PubMed  Google Scholar 

  2. Chong, C., and Sullivan, D., New uses for old drugs. Nature 448(7154):645–646, 2007.

    Article  CAS  PubMed  Google Scholar 

  3. Pujol, A., Mosca, R., Farrés, J., and Aloy, P., Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol. Sci. 31(3):115–123, 2010.

    Article  CAS  PubMed  Google Scholar 

  4. Jones, D., Pathways to cancer therapy. Nat. Rev. Drug Discov. 7(11):875–876, 2008.

    Article  CAS  PubMed  Google Scholar 

  5. Li, J., Zhu, X., and Chen, J. Y., Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts. PLoS Comput. Biol. 5:e1000450, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hurle, M. R., Yang, L., Xie, Q., Rajpal, D. K., Sanseau, P., and Agarwal, P., Computational drug repositioning: From data to therapeutics. Clin. Pharmacol. Ther. 93(4):335–341, 2013.

    Article  CAS  PubMed  Google Scholar 

  7. Duran-Frigola, M., and Aloy, P., Recycling side-effects into clinical markers for drug repositioning. Genome Med. 4:3, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P, "A Side Effect Re-source to capture phenotypic effects of drugs," Mol. Syst. Biol.. 6: 343, 2010.

  9. Ye, H., Liu, Q., and Wei, J., Construction of drug network based on side effects and its application for drug repositioning. PLoS One 9(2):e87864, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, W., Yang, S., Zhang, X., and Li, J., Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30(20):2923–2930, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gottlieb, A., Stein, G. Y., Ruppin, E., and Sharan, R., PREDICT a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7(1):1–15, 2011.

    Google Scholar 

  12. Cheng, D., Knox, C., Young, N., Stothard, P., Damaraju, S., and Wishart, D., PolySearch: A web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs, and metabolites. Nucleic Acids Res. 36:W399–W405, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozgür, A., Vu, T., Erkan, G., and Radev, D., Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24(13):277–285, 2008.

    Article  CAS  Google Scholar 

  14. Chen, X., Liu, M. X., and Yan, G. Y., Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSyst. 8:1970–1978, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, H., Song, Y., Guan, J., Luo, L., and Zhuang, Z., Inferring new indications for approved drugs via a random walk on drug-disease heterogenous networks. BMC Bioinform. 17(17):539, 2016.

    Article  Google Scholar 

  16. Ba-Alawi, W., Soufan, O., Essack, M. et al., DASPfind: New efficient method to predict drug-target interactions. J. Cheminform. 8(1):15, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alaimo, S., Pulvirenti, A., Giugno, R., and Ferro, A., Drug–target interaction prediction through domain-tuned network-based inference. Bioinformatics 29(16):2004–2008, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hwang, T., and Kuang, R., "A Heterogeneous Label Propagation algorithm for disease gene discovery, “ In SIAM international conference on data mining, pp. 583–594, 2001.

  19. Liu, Y., Wu, M., Miao, C. et al., Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS. Comput. Biol. 12(2):e1004760, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hao, M., Bryant, S. H., and Wang, Y., Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci. Rep. 7:40376, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, L., You, Z.-H., Chen, X. et al., RFDT: A rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr. Protein PeptSci. 18(999):1, 2016.

    Google Scholar 

  22. Ezzat, A., Wu, M., Li, X.-L. et al., Drug-target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinform. 17(19):267–276, 2016.

    Google Scholar 

  23. Nascimento, A. C. A., RBC, P., and Costa, I. G., A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinform. 17(1):46, 2016.

    Article  CAS  Google Scholar 

  24. Yuan, Q., Gao, J., Wu, D. et al., DrugE-rank: Improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics 32(12):i18–i27, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gawehn, E., Hiss, J. A., and Schneider, G., Deep learning in drug discovery. Mol. Inform. 35(1):3–14, 2016.

    Article  CAS  PubMed  Google Scholar 

  26. Ekins, S., The next era: Deep learning in pharmaceutical research. Pharm. Res. 33(11):2594–2603, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abdel-Basset, M., El-Shahat, D., and Mirjalili, S., A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Futur. Gener. Comput. Syst. 85:129–145, 2018.

    Article  Google Scholar 

  28. Abdel-Basset, M., Abdel-Fatah, M.G.L., and Mirjalili, S., An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems. Pers. Ubiquit. Comput., 1–16, 2018.

  29. Abdel-Basset, M., Gamal, M.G.A., and Smarandache, F., A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Des. Autom. Embed. Syst., 1–22, 2018.

  30. Abdel-Basset, M., Mohamed, M.G.M., and Smarandache, F. A novel method for solving the fully neutrosophic linear programming problems. Neural Comput. & Applic., 1–11.

  31. Abdel-Basset, M., Fakhry, M.G.A.E., and El-Henawy, I., 2-Levels of clustering strategy to detect and locate copy-move forgery in digital images. Multimed. Tools Appl., 1–19, 2018.

  32. Abdel-Basset, M., and Mohamed, M., Internet of things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Futur. Gener. Comput. Syst., 2018.

  33. Abdel-Basset, M., Manogaran, G., Mohamed, M., and Rushdy, E. Internet of things in smart education environment: a Supportive framework in the decision-making process. concurrency and Computation: Practice and Experience, e4515.

  34. Abdel-Basset, M., Rashad, M.G.H., and Zaied, A.N.H., A comprehensive review of the quadratic assignment problem: Variants, hybrids, and applications. J. Ambient. Intell. Humaniz. Comput., 1–24, 2018.

  35. Abdel-Basset, M., Gunasekaran, M., Mohamed, M., and Chilamkurti, N., Three-way decisions based on neutrosophic sets and AHP-QFD framework for supplier selection problem. Futur. Gener. Comput. Syst., 2018.

  36. Davis, A. P., Grondin, C. J., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky, D., King, B. L., Wiegers, T. C., and Mattingly, C. J., The comparative Toxicogenomics Database's 10th year anniversary: Update 2015. Nucleic Acids Res. 43(D1):D914–D920, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., and Yefanov, A., NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res. 41(D1):D991–D995, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., and Balakrishnan, L., Human protein reference database—2009 update. Nucleic Acids Res. 37(suppl_1):D767–D772, 2008.

    PubMed  PubMed Central  Google Scholar 

  39. Gilbert, D., Biomolecular interaction network database. Brief. Bioinform. 6(2):194–198, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Alfarano, C., Andrade, C. E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D., Bobechko, B., Boutilier, K., Burgess, E., and Buzadzija, K., The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res. 33(suppl_1):D418–D424, 2005.

    CAS  PubMed  Google Scholar 

  41. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., and Margalit, H., IntAct: An open source molecular interaction database. Nucleic Acids Res. 32(suppl_1):D452–D455, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., and Jandrasits, C., The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40(D1):D841–D846, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ceol, A., ChatrAryamontri, A., Licata, L., Peluso, D., Briganti, L., Perfetto, L., Castagnoli, L., and Cesareni, G., MINT, the molecular interaction database: 2009 update. Nucleic Acids Res. 38(suppl_1):D532–D539, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A. P., Santonico, E., and Castagnoli, L., MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40(D1):D857–D861, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown, K. R., and Jurisica, I., Online predicted human interaction database. Bioinformatics 21(9):2076–2082, 2005.

    Article  CAS  PubMed  Google Scholar 

  46. Meyer, M.J., Beltrán, J.F., Liang, S., Fragoza, R., Rumack, A., Liang, J., Wei, X. and Yu, H., 2018. Interactome INSIDER: a structural interactome browser for genomic studies. Nat. Methods, vol. 15, no.2 , pp. 107–120, 2018.

  47. Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., and Woolsey, J., DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(suppl_1):D668–D672, 2006.

    Article  CAS  PubMed  Google Scholar 

  48. Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., and Hassanali, M., DrugBank: A knowledgebase for drugs, drug actions, and drug targets. Nucleic Acids Res. 36(suppl_1):D901–D906, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., and Djoumbou, Y., DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 39(suppl_1):D1035–D1041, 2010.

    PubMed  PubMed Central  Google Scholar 

  50. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., and Tang, A., DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res. 42(D1):D1091–D1097, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, D. W., Sherman, B. T., and Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44–57, 2008.

    Article  CAS  Google Scholar 

  52. Huang, D. W., Sherman, B. T., and Lempicki, R. A., Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13, 2009.

    Article  CAS  Google Scholar 

  53. Frieze, A. M., Cooper, C., Siam, J., and Radzik, T., Multiple random walks in random regular graphs. Discret. Math. 23:1738–1761, 2009.

    Google Scholar 

  54. Aarts, E., Korst, J., and Michiels, W., Simulated annealing. Search methodologies. Boston, MA: Springer, 2005, 187–210.

    Book  Google Scholar 

  55. Scarpa, G., Gaetano, R., Haindl, M., and Zerubia, J., Hierarchical multiple Markov chain model for unsupervised texture segmentation. IEEE Trans. Image Process. 18(8):1830–1843, 2009.

    Article  PubMed  Google Scholar 

  56. Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J., and Barabási, A. L., Uncovering disease-disease relationships through the incomplete interactome. Science 347(6224):1257601, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, Z., Wu, X.M. and Chang, S.F., Segmentation using superpixels: A bipartite graph partitioning approach. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 789–796, 2012.

  58. Zhou, T., Ren, J., Medo, M., and Zhang, Y. C., Bipartite network projection and personal recommendation. Phys. Rev. E 76(4):046115, 2007.

    Article  CAS  Google Scholar 

  59. Kathiresan, V. and Sumathi, P., An efficient clustering algorithm based on Z-score ranking method. International Conference on Computer Communication and Informatics (ICCCI), pp. 1–4, 2012.

  60. Powers, D.M., 2011. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness, and correlation. J. Mach. Learn. Technol. Volume 2, Issue 1, 2011, pp-37-63.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jafar Ali Ibrahim.

Ethics declarations

Conflict of Interest

Jafar Ali Ibrahim has no conflict of interest. Thangamani has no conflict of interest.

Ethical Approval

This Article Does not contain any studies with Human Participants or animals performed by any of the authors.

Informed Consent

As we are not used Human Participation no, such informed consent.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.J.A., Thangamani, M. Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk. J Med Syst 42, 188 (2018). https://doi.org/10.1007/s10916-018-1038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1038-y

Keywords

Navigation