Skip to main content

Advertisement

Log in

Experimental Comparison on Dental BioTribological Pairs Zirconia/Zirconia and Zirconia/Natural Tooth by Using a Reciprocating Tribometer

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The application of tribology in dentistry is growing rapidly, intense research has been conducted to develop an understanding of dental tribology for better selection of artificial materials and dental implant design. Dental biotribology, has been one of the most important branches in biotribology in recent years. The aim of this research is to investigate the tribological performances in the tooth-to-tooth contact and material-to-natural tooth contact (zirconia vs. zirconia and natural tooth vs. zirconia). The presented research was carried out by testing the above mentioned tribological pairs with the use of a reciprocating tribometer under lubricated conditions (artificial saliva). The normal force used in the tests was 20 N the time for each test was of 60 min. The stroke length was 2 mm, according to the range of displacement used in scientific literature. The wear mass loss evaluation was evaluated by using a gravimetric method. In order to characterize the wear mechanisms, present in the worn surfaces after each of tribo-tests, a topographic analysis was carried with a 3D non-contact optical profiler. The results show that the minimum value of the COF is obtained in the case of Zirconia vs. Zirconia tribo-couple. The results on the wear mass loss show a very low wear rate when coupling in tribological condition natural tooth with a ceramic restoration (a mean value of 0.5 mg was found). This rate is even lower when the contact is between two artificial zirconia teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. van der Bilt, A., Assessment of mastication with implications for oral rehabilitation: A review. J. Oral Rehabil. 38(10):754–780, 2011.

    Article  Google Scholar 

  2. Schlueter, N., Jaeggi, T., and Lussi, A., Is dental erosion really a problem? Adv. Dent. Res. 24(2):68–71, 2012.

    Article  CAS  Google Scholar 

  3. Imfeld, T., Dental erosion. Definition, classification and links. Eur. J. Oral Sci. 104(2 (Pt 2)):151–155, 1996.

    Article  CAS  Google Scholar 

  4. d’Incau, E., Couture, C., and Maureille, B., Human tooth wear in the past and the present: Tribological mechanisms, scoring systems, dental and skeletal compensations. Arch. Oral Biol. 57(3):214–229, 2012.

    Article  Google Scholar 

  5. Wu, Y.-Q., Arsecularatne, J. A., and Hoffman, M., Effect of acidity upon attrition–corrosion of human dental enamel. J. Mech. Behav. Biomed. Mater. 44:23–34, 2015.

    Article  CAS  Google Scholar 

  6. Sarode, G. S., and Sarode, S. C., Abfraction: A review. J. Oral Maxillofac. Pathol. 17(2):222–227, 2013.

    Article  Google Scholar 

  7. Zhou, D., Zheng, J., and Zhou, Z., Effect of the size and hardness of food particles on the three-body wear of human enamel. Lubr. Eng. 32:51–53, 2007.

    Google Scholar 

  8. Li, H., and Zhou, Z. R., Wear behaviour of human teeth in dry and artificial saliva conditions. Wear 249(10–11):980–984, 2001.

    Article  CAS  Google Scholar 

  9. Ashcroft, A. T., and Joiner, A., Tooth cleaning and tooth wear: A review. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 224(6):539–549, 2010.

    Article  Google Scholar 

  10. Koczorowski, R., and Włoch, S., Evaluation of wear of selected prosthetic materials in contact with enamel and dentin. J. Prosthet. Dent. 81(4):453–459, 1999.

    Article  CAS  Google Scholar 

  11. al-Hiyasat, A. S., Saunders, W. P., and Smith, G. M., Three-body wear associated with three ceramics and enamel. J. Prosthet. Dent. 82(4):476–481, 1999.

    Article  CAS  Google Scholar 

  12. Norman, R. L., Frictional resistance and dental prosthetics. J. Prosthet. Dent. 14(1):45–51, 1964.

    Article  Google Scholar 

  13. Eisenburger, M., and Addy, M., Erosion and attrition of human enamel in vitro part I: Interaction effects. J. Dent. 30(7–8):341–347, 2002.

    Article  CAS  Google Scholar 

  14. Eisenburger, M., and Addy, M., Erosion and attrition of human enamel in vitro part II: Influence of time and loading. J. Dent. 30(7–8):349–352, Sep. 2002.

    Article  CAS  Google Scholar 

  15. Zheng, J., and Zhou, Z. R., Study of in vitro wear of human tooth enamel. Tribol. Lett. 26(2):181–189, 2007.

    Article  CAS  Google Scholar 

  16. Mayworm, C. D., Camargo, S. S., and Bastian, F. L., Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J. Dent. 36(9):703–710, 2008.

    Article  CAS  Google Scholar 

  17. Jung, Y.-S., Lee, J.-W., Choi, Y.-J., Ahn, J.-S., Shin, S.-W., and Huh, J.-B., A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J. Adv. Prosthodont. 2(3):111, 2010.

    Article  Google Scholar 

  18. Upadhyay, D., Panchal, M. A., Dubey, R. S., and Srivastava, V. K., Corrosion of alloys used in dentistry: A review. Mater. Sci. Eng. A 432(1–2. Elsevier):1–11, 2006.

    Article  Google Scholar 

  19. Thompson, J. Y., Stoner, B. R., and Piascik, J. R., Ceramics for restorative dentistry: Critical aspects for fracture and fatigue resistance. Mater. Sci. Eng. C 27(3):565–569, 2007.

    Article  CAS  Google Scholar 

  20. Moszner, N., and Salz, U., New developments of polymeric dental composites. Prog. Polym. Sci. 26(4):535–576, 2001.

    Article  CAS  Google Scholar 

  21. Nicholson, J. W., Polyacid-modified composite resins (‘compomers’) and their use in clinical dentistry. Dent. Mater. 23(5):615–622, 2007.

    Article  CAS  Google Scholar 

  22. Liu, Y., Feng, H., Bao, Y., Qiu, Y., Xing, N., and Shen, Z., Fracture and interfacial delamination origins of bilayer ceramic composites for dental restorations. J. Eur. Ceram. Soc. 30(6):1297–1305, 2010.

    Article  CAS  Google Scholar 

  23. Yin, L., Jahanmir, S., and Ives, L. K., Abrasive machining of porcelain and zirconia with a dental handpiece. Wear 225(7–12):975–989, 2003. https://doi.org/10.1016/S0043-1648(03)00195-9.

  24. Preis, V., Behr, M., Kolbeck, C., Hahnel, S., Handel, G., and Rosentritt, M., Wear performance of substructure ceramics and veneering porcelains. Dent. Mater. 27(8):796–804, 2011.

    Article  CAS  Google Scholar 

  25. Valášek, P., D’Amato, R., Müller, M., and Ruggiero, A., Mechanical properties and abrasive wear of white/brown coir epoxy composites. Compos. Part B 146:88–97, 2018. https://doi.org/10.1016/j.compositesb.2018.04.003.

  26. Zhou, Z. R., and Zheng, J., Tribology of dental materials: A review. J. Phys. D. Appl. Phys. 41(11):113001, 2008.

    Article  Google Scholar 

  27. Merola, M., Ruggiero, A., De Mattia, J. S., and Affatato, S., On the tribological behavior of retrieved hip femoral heads affected by metallic debris. A comparative investigation by stylus and optical profilometer for a new roughness measurement protocol. Measurement 90:365–371, 2016.

    Article  Google Scholar 

  28. Krolczyk, G. M., and Legutko, S., Experimental analysis by measurement of surface roughness variations in turning process of duplex stainless steel. Metrol. Meas. Syst. 21(4):759–770, 2014.

    Article  Google Scholar 

  29. Krolczyk, G. M., Krolczyk, J. B., Maruda, R. W., Legutko, S., and Tomaszewski, M., Metrological changes in surface morphology of high-strength steels in manufacturing processes. Meas. J. Int. Meas. Confed. 88:176–185, 2016.

    Article  Google Scholar 

  30. AENOR, “AENOR: Norma UNE-EN ISO 6872:2015,” http://www.aenor.es/.

  31. Ruggiero, A., D’Amato, R., Sbordone, L., Haro, F. B., and Lanza, A., On the Dental BioTribology: Comparison of Zirconia/Zirconia and Zirconia/Natural Tooth Friction Coefficients by Using a Reciprocating Tribometer. Proceeding TEEM'18 - Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, 2018, 440–446. https://doi.org/10.1145/3284179.3284254.

  32. Ruggiero, A., D’Amato, R., Merola, M., Valašek, P., and Müller, M., Tribological characterization of vegetal lubricants: Comparative experimental investigation on Jatropha curcas L. oil, rapeseed methyl Ester oil, hydrotreated rapeseed oil. Tribol. Int. 109:529–540, 2017.

    Article  CAS  Google Scholar 

  33. Ruggiero, A., D’Amato, R., Gómez, E., and Merola, M., Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions. Tribol. Int. 96:349–360, 2016.

    Article  CAS  Google Scholar 

  34. Ruggiero, A., D’Amato, R., and Gómez, E., Experimental analysis of tribological behavior of UHMWPE against AISI420C and against TiAl6V4 alloy under dry and lubricated conditions. Tribol. Int. 92:154–161, 2015.

    Article  CAS  Google Scholar 

  35. Wang, L., Liu, Y., Si, W., Feng, H., Tao, Y., and Ma, Z., Friction and wear behaviors of dental ceramics against natural tooth enamel. J. Eur. Ceram. Soc. 32(11):2599–2606, 2012.

    Article  CAS  Google Scholar 

  36. Buciumeanu, M., Queiroz, J. R. C., Martinelli, A. E., Silva, F. S., and Henriques, B., The effect of surface treatment on the friction and wear behavior of dental Y-TZP ceramic against human enamel. Tribol. Int. 116:192–198, 2017.

    Article  CAS  Google Scholar 

  37. Affatato, S., Ruggiero, A., Merola, M., and Logozzo, S., Does metal transfer differ on retrieved Biolox® Delta composites femoral heads? Surface investigation on three Biolox® generations from a biotribological point of view. Compos. Part B 113:164–173, 2017.

    Article  CAS  Google Scholar 

  38. Affatato, S., Ruggiero, A., De Mattia, J. S., and Taddei, P., Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox® Delta composites. Compos. Part B 92:290–298, 2016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto D’Amato.

Ethics declarations

Conflict of interest

Alessandro Ruggiero declares that he has no conflict of interest. Roberto D’Amato declares that he has no conflict of interest. Ludovico Sbordone declares that he has no conflict of interest. Fernando Blaya Haro declares that he has no conflict of interest. Antonio Lanza declares that he has no conflict of interest.

This article does not contain any studies with human participants performed by any of the authors.

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggiero, A., D’Amato, R., Sbordone, L. et al. Experimental Comparison on Dental BioTribological Pairs Zirconia/Zirconia and Zirconia/Natural Tooth by Using a Reciprocating Tribometer. J Med Syst 43, 97 (2019). https://doi.org/10.1007/s10916-019-1230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1230-8

Keywords

Navigation