Skip to main content
Log in

Automated Framework for Screening of Glaucoma Through Cloud Computing

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In recent times, the use of computer aided diagnosis for detection of Glaucoma from fundus images has been prevalent. In the proposed work, a cloud based system is proposed for automatic and real-time screening of Glaucoma with the use of automatic image processing techniques. The proposed system offers scalability to the developers and easy accessibility to the consumers. The proposed system is device and location independent. The input digital image is analyzed and a comprehensive diagnostic report is generated consisting of detailed analysis of indicative medical parameters like optic-cup-to-disc ratio, optic neuro-retinal rim, ISNT rules making the report informative and clinically significant. With recent advances in the field of communication technologies, the internet facilities are available that make the proposed system an efficient and economical method for initial screening and offer preventive and diagnostic steps in early disease intervention and management. The proposed system can perform an initial screening test in an average time of 6 s on high resolution fundus images. The proposed system has been tested on a fundus database and an average sensitivity of 93.7% has been achieved for Glaucoma cases. In places where there is scarcity of trained ophthalmologists and lack of awareness of such diseases, the cloud based system can be used as an effective diagnostic assistive tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tsai, J. C., How to evaluate the suspicious optic disc. Rev. Ophthalmol. 2005.

  2. Tuominen, V. J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M. and Isola, J., ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67”, in 12:R56.

  3. Ortega, M., Barreira, N., Novo, J., Penedo, M. G., Pose-Reino, A., and Gomez-Ulla, F., Sirius: A web-based system for retinal image analysis. Int. J. Med. Inform. 79(10):722–732, 2010 ISSN 1386-5056.

    Article  CAS  Google Scholar 

  4. Krieger, M. T., Torreno, O., Trelles, O., and Kranzlmuller, D., Building an open source cloud environment with auto-scaling resources for executing bioinformatics and biomedical workflows. Fut. Gen. Comput. Syst. 67:329–340, 2017 ISSN 0167-739X.

    Article  Google Scholar 

  5. Nowakowski, P., Bubak, M., Tomasz Bartyński, Tomasz Gubała, Harezlak, D., Kasztelnik, M., Malawski, M., and Meizner, J., Cloud computing infrastructure for the VPH community, J. Comput. Sci., 2017. ISSN 1877-7503.

  6. Rosenthal, A., Mork, P., Li, M. H., Stanford, J., Koester, D., and Reynolds, P., Cloud computing: A new business paradigm for biomedical information sharing. J. Biomed. Inform. 43(2):342–353, 2010 ISSN 1532-0464.

    Article  Google Scholar 

  7. Shakil, K. A., Zareen, F. J., Alam, M., and Jabin, S., BAMHealthCloud: A biometric authentication and data management system for healthcare data in cloud. J. King Saud University - Computer and Information Sciences, 2017, ISSN 1319-1578.

  8. Alonso-Calvo, R., Crespo, J., Garc'ia-Remesal, M., Anguita, A., and Maojo, V., On distributing load in cloud computing: A real application for very-large image datasets. Proc. Comput. Sci. 1(1):2669–2677, 2010 ISSN 1877-0509.

    Article  Google Scholar 

  9. Al Mamun, K. A., Alhussein, M., Sailunaz, K., and Islam, M. S., Cloud based framework for Parkinson’s disease diagnosis and monitoring system for remote healthcare applications. Fut. Gen. Comput. Syst. 66:36–47, 2017 ISSN 0167-739X.

    Article  Google Scholar 

  10. Kaur, P. D., and Chana, I., Cloud based intelligent system for delivering health care as a service. Comput. Methods Programs Biomed. 113(1):346–359, 2014 ISSN 0169-2607.

    Article  Google Scholar 

  11. Yin, F. et al., A cloud-based system for automatic glaucoma screening. 37th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Milan 2015:1596–1599, 2015.

    Google Scholar 

  12. Cheng, J., Yin, F., Wong, D. W. K., Tao, D., and Liu, J., Sparse dissimilarity-constrained coding for Glaucoma screening. IEEE Trans. Biomed. Eng. 62(5):1395–1403, 2015. https://doi.org/10.1109/TBME.2015.2389234.

    Article  PubMed  Google Scholar 

  13. Cheng, J. et al., Superpixel classification based optic disc and optic cup segmentation for Glaucoma screening. IEEE Trans. Med. Imag. 32(6):1019–1032, 2013. https://doi.org/10.1109/TMI.2013.2247770.

    Article  Google Scholar 

  14. Khalil, T., Usman Akram, M., Khalid, S., and Jameel, A., Improved automated detection of glaucoma from fundus image using hybrid structural and textural features. IET Imag. Process. 11(9):693–700, 2017. https://doi.org/10.1049/iet-ipr.2016.0812.

    Article  Google Scholar 

  15. Joshi, G. D., Sivaswamy, J., and Krishnadas, S. R., Optic disk and cup segmentation from monocular color retinal images for Glaucoma assessment. IEEE Trans. Med. Imag. 30(6):1192–1205, 2011. https://doi.org/10.1109/TMI.2011.2106509.

    Article  Google Scholar 

  16. Joshi, G. D., Sivaswamy, J., and Krishnadas, S. R., Depth discontinuity-based cup segmentation from Multiview color retinal images. IEEE Trans. Biomed. Eng. 59(6):1523–1531, 2012. https://doi.org/10.1109/TBME.2012.2187293.

    Article  PubMed  Google Scholar 

  17. Issac, A., Parthasarthi, M., and Dutta, M. K., An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. 2nd Int. Conf. Sign. Process. Integ. Netw. (SPIN), Noida 2015:143–147, 2015.

    Google Scholar 

  18. Issac, A., Partha Sarathi, M., and Dutta, M. K., An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput. Methods Prog. Biomed. 122(2):229–244, 2015 ISSN 0169-2607, https://doi.org/10.1016/j.cmpb.2015.08.002.

    Article  Google Scholar 

  19. Issac, A., Sengar, N., Singh, A., Sarathi, M. P., and Dutta, M. K., Automated computer vision method for optic disc detection from non-uniform illuminated digital fundus images. 2nd Int. Conf. Commun. Control Intell. Syst. (CCIS), Mathura 2016:76–80, 2016. https://doi.org/10.1109/CCIntelS.2016.7878204.

  20. Partha Sarathi, M., Dutta, M. K., Singh, A., and Travieso, C. M., Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed. Sign. Process. Contrl 25:108–117, ISSN 1746-8094, 2016. https://doi.org/10.1016/j.bspc.2015.10.012.

    Article  Google Scholar 

  21. Heneghan, C., Flynn, J., O’Keefe, M., and Cahill, M., Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med. Image Anal. 6:407–429, 2002.

    Article  Google Scholar 

  22. Aquino, A., Gegundez-Arias, M. E., and Marin, D., Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imag. 29(11):1860–1869, 2010. https://doi.org/10.1109/TMI.2010.2053042.

    Article  Google Scholar 

  23. Soorya, M., Issac, A., and Dutta, M. K., An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. Int. J. Med. Inform. 110:52–70.

  24. Salam, A. A., Khalil, T., Akram, M. U., Jameel, A., and Basit, I., Automated detection of glaucoma using structural and non structural features. Springerplus. 5(1):1519, 2016.

    Article  Google Scholar 

  25. Noronha, K. P., Acharya, U. R., Nayak, K. P., Martis, R. J., and Bhandary, S. V., Automated classification of glaucoma stages using higher order cumulant features. Biomed. Sign. Process. Contrl. 10:174–183, 2014.

    Article  Google Scholar 

  26. Acharya, U. R., Ng, E. Y. K., Eugene, L. W. J., Noronha, K. P., Min, L. C., Nayak, K. P., and Bhandary, S. V., Decision support system for the glaucoma using Gabor transformation. Biomed. Sign. Process. Contrl. 15:18–26, 2015.

    Article  Google Scholar 

  27. Divya, L., and Jacob, J., Performance analysis of Glaucoma detection approaches from fundus images. Proc. Comput. Sci. 143:544–551, 2018.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grants from Department of Science and Technology, No. DST/TSG/ICT/2013/37. Also, the authors express their thankfulness to Dr. S.C. Gupta, Medical Director of Venu Eye Research Centre for his contribution in classification of the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Kishore Dutta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soorya, M., Issac, A. & Dutta, M.K. Automated Framework for Screening of Glaucoma Through Cloud Computing. J Med Syst 43, 136 (2019). https://doi.org/10.1007/s10916-019-1260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1260-2

Keywords

Navigation