Skip to main content

Advertisement

Log in

Pulse Wave Velocity and Machine Learning to Predict Cardiovascular Outcomes in Prediabetic and Diabetic Populations

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Few studies have addressed the predictive value of arterial stiffness determined by pulse wave velocity (PWV) in a high-risk population with no prevalent cardiovascular disease and with obesity, hypertension, hyperglycemia, and preserved kidney function. This longitudinal, retrospective study enrolled 88 high-risk patients and had a follow-up time of 12.4 years. We collected clinical and laboratory data, as well as information on arterial stiffness parameters using arterial tonometry and measurements from ambulatory blood pressure monitoring. We considered nonfatal, incident cardiovascular events as the primary outcome. Given the small size of our dataset, we used survival analysis (i.e., Cox proportional hazards model) combined with a machine learning-based algorithm/penalization method to evaluate the data. Our predictive model, calculated with Cox regression and least absolute shrinkage and selection operator (LASSO), included body mass index, diabetes mellitus, gender (male), and PWV. We recorded 16 nonfatal cardiovascular events (5 myocardial infarctions, 5 episodes of heart failure, and 6 strokes). The adjusted hazard ratio for PWV was 1.199 (95% confidence interval: 1.09–1.37, p < 0.001). Arterial stiffness was a predictor of cardiovascular disease development, as determined by PWV in a high-risk population. Thus, in obese, hypertensive, hyperglycemic patients with preserved kidney function, PWV can serve as a prognostic factor for major adverse cardiac events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

According to the contract signed with Mostoles University Hospital, which provided the database, we cannot provide our database to any other researcher. Furthermore, we must destroy the database once our investigation has been concluded.

Abbreviations

BP:

Blood pressure

PWV:

Pulse wave velocity

CV:

Cardiovascular

CVD:

Cardiovascular disease

AIx:

Augmentation index of aortic pressure

ABPM:

Ambulatory blood pressure monitoring

MS:

Metabolic syndrome

T2DM:

Type 2 diabetes mellitus

HbA1c:

Glycated hemoglobin

EPV:

Events per variables

LASSO:

Least absolute shrinkage and selection operator

ACR:

Albumin/creatinine ratio

MACE:

Major adverse cardiovascular event

MSE:

Mean square error

GFR:

Glomerular filtration rate

BMI:

Body mass index

RF:

Random forest

References

  1. Lewington, S., Clarke, R., Qizilbash, N., Peto, R., and Collins, R., Prospective studies collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet [Internet]. 360(9349):1903–1913, 2002 Available from: https://doi.org/10.1016/S0140-6736(02)11911-8.

  2. Wang, K.-L., Cheng, H.-M., Chuang, S.-Y., Spurgeon, H. A., Ting, C.-T., Lakatta, E. G. et al., Central or peripheral systolic or pulse pressure: Which best relates to target organs and future mortality? J Hypertens [Internet]. 27(3):461–467, 2009 Available from: http://europepmc.org/articles/PMC3178100.

    Article  CAS  Google Scholar 

  3. Zhang, L., Wang, Z., Chen, Z., Wang, X., Tian, Y., Shao, L. et al., Central aortic systolic blood pressure exhibits advantages over brachial blood pressure measurements in chronic kidney disease risk prediction in women. Kidney Blood Press Res [Internet]. 43(4):1375–1387, 2018 Available from: https://www.karger.com/DOI/10.1159/000492952.

    Article  Google Scholar 

  4. Zanchetti A, Dominiczak A, Coca A, Tsioufis C, Clement DL, Agabiti Rosei E, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J [Internet]. 2018 25;39(33):3021–104. Available from: https://doi.org/10.1093/eurheartj/ehy339

    Article  Google Scholar 

  5. Willum-Hansen, T., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Thijs, L., Ibsen, H., and Jeppesen, J., Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 113(5):664–670, 2006.

    Article  Google Scholar 

  6. Sutton-Tyrrell, K., Najjar, S. S., Boudreau, R. M., Venkitachalam, L., Kupelian, V., Simonsick, E. M., Havlik, R., Lakatta, E. G., Spurgeon, H., Kritchevsky, S., Pahor, M., Bauer, D., Newman, A., and Health ABC Study, Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 111(25):3384–3390, 2005.

    Article  Google Scholar 

  7. Cruickshank, K., Riste, L., Anderson, S. G., Wright, J. S., Dunn, G., and Gosling, R. G., Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function? Circulation 106(16):2085–2090, 2002.

    Article  Google Scholar 

  8. O’Brien, E., Atkins, N., Stergiou, G., Karpettas, N., Parati, G., and Asmar, R., European Society of Hypertension International Protocol revision 2010 for the validation of blood pressure measuring devices in adults (vol 15, pg 23, 2010). BLOOD Press Monit. 15(3):171–172, 2010.

    Article  Google Scholar 

  9. Townsend, R. R., Wimmer, N. J., Chirinos, J. A., Parsa, A., Weir, M., Perumal, K., Lash, J. P., Chen, J., Steigerwalt, S. P., Flack, J., Go, A. S., Rafey, M., Rahman, M., Sheridan, A., Gadegbeku, C. A., Robinson, N. A., and Joffe, M., Aortic PWV in chronic kidney disease: A CRIC ancillary study. Am J Hypertens. 23(3):282–289, 2010.

    Article  Google Scholar 

  10. Executive summary of the third report of the national cholesterol education program (NCEP), Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285(19):2486–2497, 2001 Available from: https://doi.org/10.1001/jama.285.19.2486.

  11. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care [Internet]. 2018 1;41(Supplement 1):S13 LP-S27. Available from: http://care.diabetesjournals.org/content/41/Supplement_1/S13.abstract

  12. Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., Feldman, H. I. et al., A new equation to estimate glomerular filtration rate. Ann Intern Med. 150(9):604–612, 2009.

    Article  Google Scholar 

  13. Oliveras A, García-Ortiz L, Segura J, Banegas JR, Martell-Claros N, Vigil L, et al. Association between urinary albumin excretion and both central and peripheral blood pressure in subjects with insulin resistance. J Hypertens [Internet]. 2013;31(1). Available from: http://journals.lww.com/jhypertension/Fulltext/2013/01000/Association_between_urinary_albumin_excretion_and.17.aspx

    Article  CAS  Google Scholar 

  14. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2017.

  15. Pavlou, M., Ambler, G., Seaman, S. R., Guttmann, O., Elliott, P., King, M. et al., How to develop a more accurate risk prediction model when there are few events. BMJ. 351:h3868, 2015.

    Article  Google Scholar 

  16. Concato, J., Peduzzi, P., Holford, T. R., and Feinstein, A. R., Importance of events per independent variable in proportional hazards analysis I. background, goals, and general strategy. J Clin Epidemiol. 48(12):1495–1501, 1995.

    Article  CAS  Google Scholar 

  17. Ambler, G., Seaman, S., and Omar, R. Z., An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med. 31(11–12):1150–1161, 2012.

    Article  CAS  Google Scholar 

  18. Goeman, J. J., L1 Penalized Estimation in the Cox Proportional Hazards Model. Biometrical J [Internet] 52(1):70–84, 2010 Available from: https://doi.org/10.1002/bimj.200900028.

    Google Scholar 

  19. Simon, N., Friedman, J., Hastie, T., and Tibshirani, R., Regularization paths for Cox’s Proportional Hazards Model via coordinate descent. J Stat Softw. 39(5):1–13, 2011.

    Article  Google Scholar 

  20. Tibshirani, R., The lasso method for variable selection in the Cox model. Stat Med. 16(4):385–395, 1997.

    Article  CAS  Google Scholar 

  21. Collins, G. S., Reitsma, J. B., Altman, D. G., and Moons, K. G. M., Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med [Internet] 13(1):1, 2015 Available from: https://doi.org/10.1186/s12916-014-0241-z.

    Article  Google Scholar 

  22. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Vol. 112. Springer; 2013.

  23. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai. Montreal, Canada; 1995. p. 1137–45.

  24. Tang J, Alelyani S, Liu H. Feature selection for classification: A review. Data Classif Algorithms Appl. 2014;37.

  25. Liaw, A., and Wiener, M., Classification and regression by randomForest. R News. 2(3):18–22, 2002.

    Google Scholar 

  26. Sowa, J.-P., Atmaca, Ö., Kahraman, A., Schlattjan, M., Lindner, M., Sydor, S. et al., Non-invasive separation of alcoholic and non-alcoholic liver disease with predictive modeling. PLoS One [Internet] 9(7):e101444–e101444, 2014 Available from: https://www.ncbi.nlm.nih.gov/pubmed/24988316.

    Article  Google Scholar 

  27. Sowa, J.-P., Heider, D., Bechmann, L. P., Gerken, G., Hoffmann, D., and Canbay, A., Novel algorithm for non-invasive assessment of fibrosis in NAFLD. PLoS One [Internet] 8(4):e62439–e62439, 2013 Available from: https://www.ncbi.nlm.nih.gov/pubmed/23638085.

    Article  CAS  Google Scholar 

  28. Khunti, K., Walker, N., Sattar, N., and Davies, M., Unanswered questions over NHS health checks. BMJ. 342:c6312, 2010.

    Article  Google Scholar 

  29. Mann, J. F. E., Yi, Q.-L., and Gerstein, H. C., Albuminuria as a predictor of cardiovascular and renal outcomes in people with known atherosclerotic cardiovascular disease. Kidney Int Suppl. 92:S59–S62, 2004.

    Article  Google Scholar 

  30. Kramer, H., Jacobs, D. R. J., Bild, D., Post, W., Saad, M. F., Detrano, R. et al., Urine albumin excretion and subclinical cardiovascular disease. The Multi-Ethnic Study of Atherosclerosis. Hypertens (Dallas, Tex 1979) 46(1):38–43, 2005.

    Article  CAS  Google Scholar 

  31. Van Bortel, L. M., Laurent, S., Boutouyrie, P., Chowienczyk, P., Cruickshank, J. K., De Backer, T. et al., Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 30(3):445–448, 2012.

    Article  Google Scholar 

  32. Payne, R. A., Wilkinson, I. B., and Webb, D. J., Arterial stiffness and hypertension: emerging concepts. Hypertens (Dallas, Tex 1979) 55(1):9–14, 2010.

    Article  CAS  Google Scholar 

  33. Ben-Shlomo, Y., Spears, M., Boustred, C., May, M., Anderson, S. G., Benjamin, E. J., Boutouyrie, P., Cameron, J., Chen, C. H., Cruickshank, J. K., Hwang, S. J., Lakatta, E. G., Laurent, S., Maldonado, J., Mitchell, G. F., Najjar, S. S., Newman, A. B., Ohishi, M., Pannier, B., Pereira, T., Vasan, R. S., Shokawa, T., Sutton-Tyrell, K., Verbeke, F., Wang, K. L., Webb, D. J., Willum Hansen, T., Zoungas, S., McEniery, C., Cockcroft, J. R., and Wilkinson, I. B., Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 63(7):636–646, 2014.

    Article  Google Scholar 

  34. Babińska, M., Chudek, J., Chełmecka, E., Janik, M., Klimek, K., and Owczarek, A., Limitations of cox proportional hazards analysis in mortality prediction of patients with acute coronary syndrome. Stud Logic, Gramm Rhetor. 43(1):33–48, 2015.

    Article  Google Scholar 

  35. Ojeda, F. M., Müller, C., Börnigen, D., Tregouet, D.-A., Schillert, A., Heinig, M. et al., Comparison of cox model methods in a low-dimensional setting with few events. Genomics Proteomics Bioinformatics. 14(4):235–243, 2016.

    Article  Google Scholar 

  36. Benner, A., Zucknick, M., Hielscher, T., Ittrich, C., and Mansmann, U., High-dimensional Cox models: the choice of penalty as part of the model building process. Biometrical J. 52(1):50–69, 2010.

    Article  Google Scholar 

  37. Scuteri, A., Orru’, M., Morrell, C. H., Tarasov, K., Schlessinger, D., Uda, M. et al., Associations of large artery structure and function with adiposity: Effects of age, gender, and hypertension. The SardiNIA study. Atherosclerosis. 221(1):189–197, 2012.

    Article  CAS  Google Scholar 

  38. Koumaras, C., Tziomalos, K., Stavrinou, E., Katsiki, N., Athyros, V. G., Mikhailidis, D. P., and Karagiannis, A., Effects of renin-angiotensin-aldosterone system inhibitors and beta-blockers on markers of arterial stiffness. J Am Soc Hypertens. 8(2):74–82, 2014.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Blanca San Jose Montano, the Health Science Librarian-Documentalist of our institution, for her great support, suggestions, and encouragement in the development of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Garcia-Carretero designed and conceived the study, pre-processed the database, and made substantial contributions to the analyses and interpretation of data. He wrote the first draft of this paper. Dr. Vigil-Medina contributed to the recruitment of patients involved in this study. Dr. Barquero-Perez and Dr. Ramos-Lopez, as thesis advisors, critically reviewed the final manuscript.

Corresponding author

Correspondence to Rafael Garcia-Carretero.

Ethics declarations

Ethical approval

All procedures involving human participants were conducted in accordance with the ethical standards of the responsible institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Our research was approved by our Ethics and Research Committee.

Consent to participate

Given that our research was retrospective and was approved by our Research Committee, the need to obtain consent was waived.

Consent for publication

We obtained a consent for publication from our own institution and our Ethics and Research Committee.

Competing interests

All authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Carretero, R., Vigil-Medina, L., Barquero-Perez, O. et al. Pulse Wave Velocity and Machine Learning to Predict Cardiovascular Outcomes in Prediabetic and Diabetic Populations. J Med Syst 44, 16 (2020). https://doi.org/10.1007/s10916-019-1479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1479-y

Keywords

Navigation