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ABSTRACT 

 
 
Objectives: Hearing loss is the leading human sensory system loss, and 

one of the leading causes for years lived with disability with significant 

effects on quality of life, social isolation, and overall health. Coupled with 

a forecast of increased hearing loss burden worldwide, national and 

international health organizations have urgently recommended that 

access to hearing evaluation be expanded to meet demand.  

 

Methods:  The objective of this study was to develop ‘AutoAudio’ – a 

novel deep learning proof-of-concept model that accurately and quickly 

interprets diagnostic audiograms. Adult audiogram reports representing 

normal, conductive, mixed and sensorineural morphologies were used to 

train different neural network architectures. Image augmentation 

techniques were used to increase the training image set size. 

Classification accuracy on a separate test set was used to assess model 

performance. 

 

Results:  The architecture with the highest out-of-training set accuracy 

was ResNet-101 at 97.5%. Neural network training time varied between 2 

to 7 hours depending on the depth of the neural network architecture. 

Each neural network architecture produced misclassifications that arose 

from failures of the model to correctly label the audiogram with the 
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appropriate hearing loss type. The most commonly misclassified hearing 

loss type were mixed losses. 

 

Conclusion:  Re-engineering the process of hearing testing with a 

machine learning innovation may help enhance access to the growing 

worldwide population that is expected to require audiologist services. 

Our results suggest that deep learning may be a transformative 

technology that enables automatic and accurate audiogram 

interpretation. 

 

Key words: audiogram, automation, deep learning, neural networks 

 

Level of evidence: 2c 
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INTRODUCTION 
 

 
The National Academy of Sciences (NAS) and World Health Organization 

(WHO) have identified hearing loss as the leading human sensory system 

loss, and one of the leading causes for years lived with disability with 

significant effects on quality of life, social isolation, and overall health.1,2 

Coupled with a forecast of increased hearing loss burden worldwide, the 

NAS and WHO have urgently recommended that access to hearing 

evaluation be expanded to meet demand.1,2 Compounding this increased 

demand for hearing services, there is a severe shortage of audiologists 

globally, particularly in developing countries.3 For example, many 

Southeast Asian and African countries report having less than one 

audiologist per million population.3 In developed countries such as the 

United States, audiology expertise is also in short supply with recent 

estimates recommending the supply of audiologists be increased 

immediately by 50% in order to meet forecasted demand.4  

 

Recognizing the gap between supply and demand for hearing evaluations, 

several novel hearing test delivery solutions have emerged, including 

hearing screening through the telephone and internet mediums, and 

portable diagnostic audiometers.5-10 However, these assessment methods 

do not replace the need for comprehensive expert audiologist 

interpretation of the result. Thus, despite these innovations, we have yet 

to make significant gains in accessibility for diagnostic hearing function 

evaluation when audiologist interpretation is limited or unavailable.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20086637doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20086637


5 
 

 

Machine learning, a domain of artificial intelligence, has experienced 

explosive popularity in applications in medicine.11,12 The pillars of 

promise in using machine learning for medical applications are grounded 

in automating diagnostic and prognostic tasks, as well as deriving novel 

insights from massive biomedical datasets. Deep learning approaches, a 

machine learning technique that utilizes multi-layered models called 

‘neural networks’ that learn how to independently classify text or images 

when trained on examples labelled by human experts, have experienced a 

surge in popularity recently. For example, neural networks have been 

successfully used to diagnose diabetic retinopathy and skin pathologies 

with accuracy meeting or exceeding human experts.13-15 When used to 

augment clinical diagnostics and decision making, machine learning 

techniques may serve as the foundation of innovative solutions for 

mismatches between supply and demand in health care access. 

 

Given the marked deficit in audiology workforce capacity, an exponential 

expected increase in incidence and prevalence of hearing loss worldwide, 

and the success of deep learning in diverse prognostic tasks, a deep 

learning-based approach for automatic interpretation of audiograms has 

the potential to be a game-changing innovation. As of the writing of this 

manuscript, interest in applying machine learning to myriad challenges in 

hearing loss from auditory to physiology to cochlear implant care 

delivery has seen exponential growth over the past decade.16 With regard 
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to audiometric data specifically, one group has deployed machine 

learning algorithms to automatically estimate audiogram performance 

based on online participant testing.17,18 However, no prior models have 

been developed to automatically interpret existing traditional plot-based 

audiogram data. The purpose of this manuscript is to present a novel 

deep learning proof-of-concept model that accurately and quickly 

interprets diagnostic audiograms.  
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METHODS 
 

This study was reviewed by the Sunnybrook Health Sciences Center ethics 

review board and deemed exempt from formal review (Protocol # 044-

2019). 

 

Image Data Acquisition & Augmentation. 1,007 audiogram reports from 

adult patients were obtained from the Department of Otolaryngology 

electronic medical record system at the Sunnybrook Health Sciences 

Center in Toronto, Ontario, Canada from 2017 to 2019. Audiograms 

representing normal, conductive, mixed and sensorineural morphologies 

were included. The audiogram hearing loss morphologies were labelled 

by expert audiologists from the Department of Otolaryngology as part of 

routine clinical encounters. In the province of Ontario, practicing 

audiologists are certified and regulated by the College of Audiologists 

and Speech-Language Pathologists of Ontario (CASLPO). The audiogram 

database was a convenience sample with no hearing pathology or 

diagnosis specifically excluded. The audiogram plots were cropped from 

the body of the audiogram reports and saved as individual jpeg 

formatted picture files.   

 

The total audiogram image file database was randomly split 80/20 to 

segment the image dataset into ‘training’ (n = 806) and ‘hold-out’ 

validation set (n = 201) subgroups respectively. No images contained 

within the hold-out set were used in the training set. Well-established 
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image transformation techniques were used to increase the number of 

images available for training the deep learning model.19 Prior to each 

training epoch (i.e., learning cycles), the algorithm that trains the neural 

network randomly transforms the image within the bounds of 

predetermined transformation settings. Transform operations including 

image rotation, warping, contrast, lighting, and zoom were applied to 

artificially add natural variation to the audiogram images in our training 

set (e.g., images taken on an angle). Once trained, the neural network 

model was used to predict the diagnosis of each image in the hold out 

set, and those predictions were compared to the true classification to 

evaluate the accuracy of the trained model. 

 

Deep Learning Approach. We tested four neural network models to 

interpret audiogram plots and learn to predict the classifications that 

audiologists at our institution made using the same plots.  

 

A neural network model can be trained from scratch, or a previously 

trained model can be trained (i.e., re-purposed) for a new predictive task, 

which is known as transfer learning. In general, a model trained using a 

small training set via transfer learning will perform better than one 

trained from scratch. We performed transfer learning and compared 

classification accuracy using four previously trained models (ResNet-32, 

ResNet-50, ResNet-101, and ResNet-152)  with convolutional neural 

network architectures that were previously trained on the ImageNet 
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(image-net.org) database containing over 14 million images.20–23 The 

inputs for our model were pre-transformed images of static audiogram 

plots sized to 500 x 500 pixels. During training, we re-trained every layer 

because images in the original ImageNet database are dissimilar to 

audiograms. The model output was a classification of the audiogram 

image as one of four possible labels: i) normal, ii) conductive loss, iii) 

sensorineural loss, or iv) mixed loss (Figure 1). See the Online Methods 

Supplement for further technical details of the neural network algorithm 

development. 

 

Neural Network Model Prediction Interpretation. To explore which 

regions or components of the audiogram images were influential in the 

neural network arriving at prediction, gradient-weighted class activation 

heat-maps (Grad-CAM) were generated using the final layer of the trained 

neural network.20 Grad-CAM figures represent a single prediction case 

with a ‘heat-map’ overlaid on regions of the image that were activated  

(i.e. largest influence on model output) when predicting the image 

classification. 
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RESULTS 
 

 
Model Performance. The corpus of audiogram images comprised 435 

sensorineural, 214 mixed, 207 normal, and 151 conductive hearing loss.  

The architecture with the highest out-of-training set accuracy was 

at 97.5% (Table 1; additional training and performance 

metrics available in Online Model Performance Supplemental file). 

 
Each neural network architecture produced misclassifications that arose 

from failures of the model to correctly label the audiogram with the 

appropriate hearing loss type. For 32 as an example, the model 

had the greatest difficulty with true mixed loss morphologies (n = 3 

erroneous mixed predictions) and excelled when interpreting normal 

plots (Figure 2). The misclassified audiograms with the highest error 

rates from  were extracted and examined using a gradient-

weighted class activation heat-map to visualize the model’s 

‘interpretation’ of the most important regions of the audiogram for 

hearing loss morphology (Figure 3 A-D). Bright regions in the audiogram 

plot correspond to regions of the audiogram image where the neural 

network relied upon for making its label decision. For example, the 

neural network learned that the separation between the air conduction 

line and the bone conduction line represented a conductive loss. 

However, in some instances the model failed to recognize the bone 

conduction threshold below normal which would classify an audiogram 

as representing a mixed loss (Figure 3A), or a bone conduction threshold 
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value at high frequency that would represent a sensorineural loss, albeit 

only at one frequency (Figure 3C). We emphasize that these predictions 

were rendered from the morphology of hearing loss data within the 

audiogram plot and were not informed by any clinical patient factors.  
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DISCUSSION 
 

Based on representative audiograms of normal hearing, sensorineural, 

conductive, and mixed hearing loss, the ‘AutoAudio’ deep learning model 

was able to autonomously and accurately interpret audiogram plots with 

97.5% accuracy. The best performing convolutional neural network 

architecture was the 101-layer  variant, however all  variants 

performed similarly within a two-percent margin.  

 

Similar to how an experienced audiologist interprets audiogram plots, a 

neural network relies upon spatial relationships inherent to the plot data 

in order to classify images. Insights into model performance can also be 

derived from the model failings. The most commonly misclassified 

hearing loss morphologies were conductive and sensorineural hearing 

loss when the correct label was mixed hearing loss. Identifying a mixed 

hearing loss is more conceptually challenging as it requires simultaneous 

observation of hearing thresholds consistent with both an air and bone 

conduction loss. Although deeper networks may enhance classification 

accuracy,21 we did not see improved performance in architectures with 

greater depth. Progressively deeper networks are typically more 

computationally demanding.22 When classification performance is 

equivocal, a more parsimonious model that requires less training time is 

preferred.  
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Classifying a hearing test by morphology alone addresses the 

fundamental task of determining the type of hearing loss morphology 

present on audiometric analysis. The diagnosis of hearing loss requires 

integration of clinical data (e.g. a comprehensive otologic history and 

physical examination), but a determination of the dominant hearing loss 

‘type’ is a key first task. Our model could be deployed to help triage 

patients with hearing loss for aural rehabilitation candidacy in regions 

with limited or no audiologist availability after a hearing test is 

completed using conventional audiometry (Figure 4a). Specifically, a local 

technician could administer the hearing test and the model would 

instantly provide an interpretation. The model would indicate if further 

assessment for either amplification or medical evaluation is necessary. A 

major advantage of our deep learning approach for automatic audiogram 

interpretation is that this model can work with any existing audiometer 

software or output, so long as the audiogram plot data is standardized 

with respect to common frequency and threshold ranges. No new 

equipment needs to be developed nor is a deviation from specific hearing 

testing protocol required. This is an important consideration when 

considering deployment to resource-limited settings. However, we 

recognize that AutoAudio does not incorporate clinical information nor 

does it consider other parts of the audiogram test battery such as 

tympanometry, acoustic reflexes or word recognition scores.  
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With the impending increase in hearing loss burden worldwide, there will 

be a commensurate increase in the need for hearing health services.2,23,24 

Automatic audiogram interpretation might also confer benefits in 

developed countries. Audiology stakeholders have recently identified 

significant bottlenecks and human resource capacity constraints that may 

limit their ability to meet demand.4,25 Re-engineering the hearing 

evaluation process using machine learning presents an opportunity for 

generating significant value for audiologists, patients, and health 

systems. Freed from performing and interpreting routine hearing tests, 

audiologists may gain time for more pressing tasks such as counselling 

and aural rehabilitation. Machine learning technology is affordable, 

scalable, and can be deployed wherever a smartphone or laptop computer 

can be used. Health systems with adequate audiologist availability may be 

able to repurpose costs from employing audiologists for hearing 

evaluations to enhancing or expanding aural rehabilitation programs.  

 

AutoAudio could also be used to swiftly interpret and upload 

warehoused paper-based audiograms that report hearing performance in 

the standard plot form  (Figure 4b). Considering that advances in 

audiometry and reporting of results may evolve beyond current plot-

based result representations, rapid historical audiogram digitization may 

be AutoAudio’s most durable application. This application may be of 

interest to research groups looking to rapidly upload old audiogram data 

at a much faster rate than any human could via manual entry. In a sense, 
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the model is backwards compatible with all audiograms so long as the 

audiometric data is in plot form. Rapid extraction of audiogram 

information for inclusion could efficiently build research or clinical 

databases, or populate a patient’s electronic health record with 

interpretations of historical non-digitized audiograms.  

 

An alternative approach to automating audiogram interpretation using 

deep learning is to use rule-based methods such as image understanding 

through decision trees.26,27 In a rule-based method, a human manually 

defines all features of an audiogram plot deemed predictive of a 

conductive loss (i.e., presence of an air-bone gap with normal bone 

conduction thresholds), sensorineural loss (i.e., increased bone 

conduction thresholds without an air-bone gap), and mixed (i.e. an air-

bone gap with increased bone conduction thresholds) hearing loss. One 

advantage of the rule-based approach is that performance should 

theoretically approach 100% if the audiogram plot is of sufficient quality 

for the rules to be evaluated. If audiograms are to be administered in an 

automated setting in the future with data available in numeric table form 

- as opposed to a graphical format - this would further facilitate the use 

of a rules-based algorithm in interpreting audiograms. A major limitation 

of using numerical frequency values today is that the standard format for 

recording and storing results on audiometric test performance in many 

settings is via the audiogram plot. Conversion of audiogram plots to 

numerical values introduces an additional pre-processing step which 
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would require institutions to change their methodology of reporting for 

future audiogram plots and more importantly, convert all legacy data to 

numerical format. Our approach takes advantage of the current reporting 

standard and could thus be implemented much more easily in practice, 

since no extra pre-processing is required assuming the audiogram plot 

format is similar to the plot style the model was trained on. 

 

One of the major disadvantages of a rules-based approach is the 

requirement for a human to rigorously define the numerical relationships 

(i.e., air-bone gap, bone conduction thresholds of a mixed loss) of all 

hearing loss morphologies before being used in the model. Compared to 

heuristic approaches, a neural network simplifies automatic 

interpretation as human input is only needed to orient the model to the 

correct overall classification during the training phase. The neural 

network ‘learns’ the important features and nuances of audiogram 

morphologies on its own without any human intervention. One potential 

weakness in this classification task is that additional model training may 

be needed for novel images that are significantly different than the image 

data on which the model was originally trained. However, the model 

could be easily retrained using heterogenous input images. Furthermore, 

neural network techniques are becoming widely accessible where limited 

specialized expertise is needed to train and deploy a model. As was the 

approach in this study, existing 'off the shelf' and open source models 

can be repurposed for a specific application with relative ease. While it is 
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true that domain expertise and effort could make a comparable 

performing interpretation model without machine learning, neural 

networks are easily implemented and powerful. All a hearing test 

technician would need to implement the neural network model is access 

to the mobile or computer-based application that can capture the 

audiogram plot image. There is no need for the additional step of 

translating the plot data into tabular numerical format needed for a 

rules-based model, nor to develop new hearing testing equipment or 

techniques. The neural network is completely backwards compatible so 

long that the audiogram data is in the standard plot form. In resource-

scarce settings, care delivery innovations that do not involve expensive 

new technologies, additional process steps, or on-site specialized 

expertise are more likely to succeed. 

 

In the past five years, there have been several notable success stories in 

using deep learning as a diagnostic tool in cutaneous melanoma and 

diabetic retinopathy.13,14 These models were able to produce classification 

performance comparable to human ‘experts’ using one neural network 

architecture – Google’s .28 In this paper, we contribute a novel 

application to the substantial global health issue of hearing care delivery. 

To our knowledge, this is the first successful neural network model 

designed to automate audiogram interpretation.  We also demonstrate 

the model performance gains through testing multiple architectures 

composed of different functional units and layer depths. In doing so, we 
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were able to generate impressive image classification performance. Our 

model also takes advantage of enhanced learning rate tuning ‘super 

convergence’ techniques.29 As the field is so new, deep learning model 

engineering is still a sandbox with no unified path to optimality. 

Continued experimentation with model constructs and hyperparameters 

will continue to push model performance to meet and exceed human 

standards.  

 

There are several limitations associated with our study. First, our model 

may not be generalizable to audiogram plots that combine both ears on a 

single plot or use non-standard annotations, scales, and axis lines. Our 

institution’s audiogram data are hand-written on separate plots for the 

left and right ears. Future work will focus on training neural network 

models using audiograms generated from different audiometer software 

and from collaborating institutions. Second, neural networks generally 

require large datasets for model training to achieve high accuracy. Our 

model accuracy would presumably increase with more training data. 

Third, interpretability in deep learning remains a persistent issue. Feature 

identification in deep learning models is an active area of research,30 and 

will be key for supporting scaled implementation of such models in 

clinical applications where confidence in exactly how the models arrive at 

predictions is needed. Lastly, we did not perform a direct head-to-head 

comparison between human audiologists and the neural network 

algorithms. We are planning a follow-up analysis whereby we will 
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challenge AutoAudio against several established audiologists, 

Otolaryngology residents and audiology trainees.  For the purposes of 

describing the performance of the algorithm in our present paper, an 

exploration of inter-rater reliability would not affect the performance of 

the algorithm . Previously published work has shown that the inter-

rater reliability between paired audiologists interpreting air- and bone-

thresholds to be within near perfect agreement.31 However, exploring 

inter-reliability assessment on with our local audiologists would be an 

interesting angle that may support the automation of audiogram 

interpretation. If significant differences in human audiologist 

interpretation exist, a case could be made in favor of an algorithm taking 

over the task from humans to reduce between-operator variability during 

clinical testing.  

 

Hearing loss is and will continue to be a significant public health issue. 

Re-engineering the process of hearing testing with a machine learning 

innovation may help enhance access to the growing worldwide 

population that is expected to require audiologist services. Our results 

suggest that deep learning may be a transformative technology that 

enables automatic and accurate audiogram interpretation. Further work 

to generate deep learning algorithms that incorporate hearing loss 

severity, clinical information and the entire audiometric test battery will 

expand the utility of this approach. Such future models will also need to 

be trained on audiograms with different graphical formats and 
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annotations to enhance generalizability across different audiometers and 

practitioners.   
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TABLE LEGENDS 
 

Table 1.  Audiogram interpretation model performance comparison 

across different neural network architectures based on a hold-out image 

set. 

 

  

 
Parameter 
Layer Depth 32 50 101 152 
Epochs 30 
Learning Rate Range 1 x 10-7 to 1 x 10-2 
Training Time 
(minutes:seconds) 

125:24 221:30 341:12 438:23 

Model Test 
Classification Accuracy 

96.0% 97.0% 97.5% 97.0% 
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FIGURE LEGENDS 
 
 
 
Figure 1.  Analytic workflow for preparing and analyzing audiogram 

plots for automatic morphology classification using neural networks.  

 

Figure 2.  Confusion matrix outlining the class-specific performance of 

the model. 

 

Figure 3.  Sample of model misclassifications. A. Incorrect classification 

of a conductive hearing loss, B. sensorineural hearing loss, C. a normal 

result, and D. a mixed hearing loss. 

 

Figure 4. Potential implementations of an automatic audiogram classifier. 

A) In place of a trained audiologist, the automatic audiogram classifier 

makes a clinical prediction and recommended action. B) An automatic 

audiogram classifier rapidly uploads historic paper audiogram data into a 

database for use in research or clinical record development. 
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ONLINE SUPPLEMENT LEGENDS 
 
 

 
1. Online Method Supplement. Additional methods background on the 

deep learning model and parameters.  

 

2. Online Model Performance Supplement. Additional  model 

performance metrics.  
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