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Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease with first symptoms similar to the flu. COVID-19 appeared
first in China and very quickly spreads to the rest of the world, causing then the 2019-20 coronavirus pandemic. In many
cases, this disease causes pneumonia. Since pulmonary infections can be observed through radiography images, this paper
investigates deep learning methods for automatically analyzing query chest X-ray images with the hope to bring precision
tools to health professionals towards screening the COVID-19 and diagnosing confirmed patients. In this context, training
datasets, deep learning architectures and analysis strategies have been experimented from publicly open sets of chest X-
ray images. Tailored deep learning models are proposed to detect pneumonia infection cases, notably viral cases. It is
assumed that viral pneumonia cases detected during an epidemic COVID-19 context have a high probability to presume
COVID-19 infections. Moreover, easy-to-apply health indicators are proposed for estimating infection status and predicting
patient status from the detected pneumonia cases. Experimental results show possibilities of training deep learning models
over publicly open sets of chest X-ray images towards screening viral pneumonia. Chest X-ray test images of COVID-19
infected patients are successfully diagnosed through detection models retained for their performances. The efficiency of
proposed health indicators is highlighted through simulated scenarios of patients presenting infections and health problems
by combining real and synthetic health data.

Keywords Chest X-ray images (CXR) - Pneumonia detection - Health scoring system - Coronavirus disease - COVID-19 -
Radiology

Introduction and motivation

COVID-19, initially named 2019-nCoV, appeared first in
China and very quickly spreads to the rest of the world
causing then the 2019-20 coronavirus pandemic. At the date
of the preprint of this work (April 19th, 2020) [1], there have
been 83,805 controversial confirmed cases in China, more
than 1,000,000 confirmed cases in Europe and 2,355,676
confirmed cases all around the world. To date (April 29th,
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2021), there have been 149,744,454 global cases all around
the world.!

In many cases, this disease causes pneumonia. Character-
istics of such an infection can be observed by radiologists.
Also, deep learning methods can be helpful for operating
deep analysis on query radiography images. Thanks to arti-
ficial intelligence, early stage and precision diagnosis can
be done. Moreover, augmented intelligence can also play a
key role for detecting and preventing the spread of novel
coronavirus [2].

In this pandemic, the effective screening of COVID-19
is an arduous task in practice. Standard screening test kits
called Reverse Transcription-Polymerase Chain Reaction
(RT-PCR) are often unavailable. Moreover, the RT-PCR test

1Online map of COVID-19 Global Cases by the CSSE center at Johns
Hopkins University: https://coronavirus.jhu.edu/map.html
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is highly sensitive. It was found that deep-based Computed
Tomography (CT) images analysis could be more reliable
than RT-PCR test in early-stage diagnostic [3-5]. Notably,
where RT-PCR test can turn out negative, deep CT image
analysis can already predict true positives in certain cases.
False negatives to RT-PCR test can lead to non-negligible
propagation of this disease.

At this time, American College of Radiology recommenda-
tions for the use of chest radiography and CT for Suspected
COVID-19 infection [6] point that generally, the findings on
chest imaging in COVID-19 are not specific, and overlap
with other infections, including influenza, HIN1, SARS and
MERS. Notably, being in the midst of the current flu season
with a much higher prevalence of influenza in the U.S. than
COVID-19, further limits the specificity of CT. Besides,
the use of radiography equipment requires high disinfection
needs after each use which can make massive tests labori-
ous and time-consuming. In practice, for hygienic reasons,
chest X-rays (CXR) are often frontally taken with patients
on a stretcher or bed, lying down or at best sitting. Such con-
straints often conduct to chest X-rays with poor quality and
real issues in term of analysis.

Nevertheless, CT images of lung and chest X-ray images
offer additional data for screening COVID-19. Notably, Al
technology is already deployed in China for radiography
examination and radiomics-like analysis from CT images
[7]. Al technology can also facilitate remote operations and
help to face the lack of expert radiologists. At this date,
many Al tools and radiography image datasets are private
resources. The access to publicly open COVID-19-related
sets of lung CT images towards conducting deep learning
experiments is relatively limited. Some open access X-ray
image sets of chest are publicly available.

Research works are highly needed in areas of image
detection, evaluation and making-decision techniques, and
radiography examinations in order to highlight proof of
concepts and scientific truths about this misunderstood
COVID-19 disease. The goal of this paper is twofold: 1)
to present deep learning models tailored with chest X-ray
images for detecting pneumonia infection cases such as
viral cases towards screening COVID-19, ii) to propose
easy-to-apply health indicators for evaluating detected
pneumonia infection cases with an estimator of infection
and predictions of patient status. This study is presented
with the aim of supporting radiologists and other clinicians.
In no case this preliminary study could be substituted to a
medical advice.

The next section presents some investigated deep learn-
ing based image detection architectures and analysis strate-
gies. Section “Experimental study” shows a set of experi-
ments to evaluate the performance of the considered archi-
tectures and “Conclusion” concludes the paper.

@ Springer

Proposed approach for pneumonia analysis

CNN-based detection and evaluation of infected
patients

In [8, 9], authors emphasized that the COVID-19 is a viral
disease and not a bacterial one. Respectively, an efficient
classifier is designed to automatically detect if a query chest
X-ray image is Normal, Bacterial or Viral by assuming that
a COVID-19 infected patient, tested during an epidemic
period, has a high probability to be a true positive when the
classification output is Virus (see Fig. 1). Nevertheless, it
is worth mentioning that a severe viral respiratory infection
can lead to a secondary pneumonia of bacterial nature [10].
For this reason, our classifier aims to be useful at early stage
of COVID-19 pulmonary symptoms.

The pulmonary infections can be more directly visible in
CT images than in chest X-Ray images [11]. Nevertheless,
detection of COVID-19 from chest X-ray images is
investigated since they represent widespread resources that
are often analyzed upstream of CT scans.

At this time, chest images of COVID-19 cases are rel-
atively limited in open access. Several CNN-based classi-
fication architectures such as [12, 13] are trained by using
small chest image sets of COVID-19 cases. In such cases, it
is hard to statistically build meaningful architecture. How-
ever, this could permit to observe first behaviors and trends
of directly tailored CNN-based classification models. In our
case, we adopt another strategy which consists of train-
ing CNN-based classification architectures over larger chest
image sets of pneumonia and normal cases, and particularly
evaluating them by using COVID-19 images.

Tailored CNN models

A set of tailored models based on CNNs have been designed
to take three set of image categories (e.g.; normal case,
viral pneumonia case and bacterial case) as input and to
output the predicted probability for each of the categories.
The trained models exploit the CNN backbones ResNet34,
ResNet50 and DenseNet169 through the fastai library and
a fully connected head, with a single hidden layer, as a
classifier.

Besides, a trained model exploits the CNN reference
backbone VGG-19. In addition, a dual use model (Inception
ResNetV2 - RNN) is prepared for i) characterizing
categories of input split images by getting a hidden layer
output of a fin-tuned Inception ResNetV2 architecture, ii)
predicting final categories of split images (image blocks)
using a bidirectional Long Short-Term Memory (RNN-
LSTM) architecture. For these last ones, a Keras and
TensorFlow workflow is used.
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Fig. 1 Global workflow using deep learning for automatic detection of infection towards supporting COVID-19 screening from chest X-ray
images. In a COVID-19 epidemic context, a detected viral pneumonia can particularly presume a COVID-19 infection

Specifically, the prediction stage of the dual-use model
operates at a second level analysis of the data. A sequence
of sub-images is first generated while entirely covering
the images by directly positioning a regular grid onto the
original query chest X-ray images. Precisely, the image is
split into a set of image blocks that correspond to grid cells
(see Fig. 2). This operation enhances the size of the training
set while limiting the loss of image details. This loss often
occurs when the original images are resized for fitting inputs
of standard deep learning architectures. Then, each image
block is given as input to the RNN for providing a set of
local predictions (radiographic pattern) towards estimating
health indicators such as a CNN-based infection ratio (a use
is described in Estimation of CNN-based health indicators).
The grid discretization (matrix of contamination) should be
tuned according to the obtained predictive performance of
the considered architecture.

Data preparation and model inputs

For our experiments, we exploited chest X-ray images
from the Chest X-Ray Images (Pneumonia) dataset.> This
dataset is related to the paper [14] on the identification
of medical diagnoses and treatable diseases by image-
based deep learning. This dataset contains 5,863 children
X-ray images divided in two categories, namely Normal
and Pneumonia. The Pneumonia category is composed of
pneumonia images that are labeled either bacterial or viral
(see illustrations in Fig. 6 of [14]).

The Chest X-Ray Images (Pneumonia) dataset is reorga-
nized into three classes; namely normal, bacterial pneumo-
nia and viral pneumonia (see samples in Fig. 3a, b and c,
respectively). Each training set contains 1345 images and
each test set contains 148 images. Since this dataset was

2Chest X-Ray Images (Pneumonia) dataset: https://www.kaggle.com/
paultimothymooney/chest-xray-pneumonia

composed of pulmonary images having heterogeneous and
large sizes; and to deal with reasonable computational times
during the CNN training experiments, all the images were
resized to a unique dimension and rescaled into smaller
images (e.g.; size 310 x 310) to fit with standard inputs
of tailored architectures. For the last tailored model using
RNN, a preliminary split of the original image precedes the
resizing step.

Regarding the tests, we added a test set (blind test) that
is composed of a single class containing 145 chest X-
ray images of COVID-19 infected patients (see sample in
Fig. 3d). This test set has been constituted by filtering the
heterogeneous COVID-19 Image Data Collection dataset
[15]; folder containing a mix of CT and X-ray images with
a variety of infection types.

We emphasize that the exploited images often contain
artifacts such as described in [16] that can make difficult the
training stage of machine learning models. Such artifacts are
shown in Fig. 3e, f, g and h.

At this time, we consider that the quantity of available
COVID-19 is still too limited for building a reliable detector
that can discern between Non-COVID-19 viral pneumonia
and COVID-19 viral pneumonia. In our case, the 145 chest
X-ray images are specifically used as a test set towards
ideally detecting them as viral pneumonia. As previously
mentioned, we assume that a COVID-19 infected patient,
tested during an epidemic period, has a high probability
to be a true positive when the classification output is viral
pneumonia (Fig. 1).

Estimation of CNN-based health indicators

Based on statistical tools (logistic regression and statistical
tests) and realistic data, studies on COVID-19-related death
risk factor have been proposed in [17, 18]. In this paper, we
sketch a simple measure to provide to health professionals
an estimator for evaluating the chance of a patient to
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Fig.2 Global workflow using deep learning based for automatic estimation of a CNN-based infection rate indicator from chest X-ray images

survive COVID-19 considering risk factors; namely age,
comorbidity and the infection rate indicator (Fig. 2). For
each risk factor, we associate a score which represents a
penalty (a large value decreases the chance of a patient to
escape fatality). The proposed measure F' is the addition of
scores divided by a critical threshold 7. Beyond 7, there
is no chance to be recovered. Formally, F' is expressed as
follows:

F=S1+85+83)/T

where &1 measures the risk due to the patient’s age, S2
measures the risk related to the CNN-derived infection rate
measured from the X-ray chest image of a patient, S3
measures the risk associated with comorbidities of a patient
that can lead to the development of complications.

(i

(e)

More precisely, let us give an example to concretely
compute the measure F. First, we point out that the
scoring system used hereafter must be adjusted by health
professionals to match with reality.

In this example, we use the values of fatality risk-
ratio during COVID-19 epidemic in Hubei, China [19, 20].
Proportionally to these values, we define penalty scores
(S1), see Table 1.

Then, we define a Virality score (S;) related to the
infection rate of X-ray image (CXR score). Sy can be the
probability of the concerned class that is directly provided
by the used CNN. A more refined formulation of S, is
proposed to scrutinize the X-ray image and to consider
radiographic infection patterns. Each image is divided in
n sub-images where n = 9 (value for which our RNN
effectively performs). After this multi-regional analysis,

Fig.3 Chest X-ray samples from the test datasets. Row 1 shows image categories. Row 2 shows various artifacts captured with chest X-rays such

as writings (e.g.; letter “R”) and medical devices (e.g., tubes, sensors)
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Table 1 Scores related to age

Age Fatality risk ratio (Hubei, China) Associated score (S)
>80 18% 100

70-79 9.8% 54.4

60-69 4.6% 25.5

50-59 1.3% 7.2

40-49 0.4% 2.2

30-39 0.18% 1

20-29 0.09% 0.5

10-19 0.02% 0.1

0-9 0.01 0.05

The sources of the “Fatality risk ratio” are [19, 20]

Bold entries correspond to values of interest with respect to contextual
information such as best performances

each sub-image will be in status virus, bacteria or normal
(see Fig. 2). A score equal to 100 is assigned to the X-
ray image when the n sub-images are infected by a virus.
Proportionally, the infection rate of the image is: S =
(100/n) x N, where N is the number of the virus infected
sub-images.

The third risk factor (S3) is related to diseases of a
patient in addition to COVID-19. We use the values of case
fatality rate during COVID-19 epidemic in China [21, 22].
Proportionally to these values, we define penalty scores
(S3), see Table 2.

In this example, we set the critical threshold 7 to 200,
then beyond this limit, one cannot escape fatality. The
measure F can be used as follows. If F > 1 then the hope
to escape fatality is null. Varying F from O to 1, the patient
gradually moves away from the hope of recovering.

The value 200 assigned to 7 is obtained by taking
reference a patient having a cardiovascular disease and aged
over 80 years. We assume that such a patient cannot fight
against COVID-19. Therefore, a person having COVID-19
which reaches the score 200 cumulates too many factors to
overcome the illness.

Table 2 Scores related to disease

Disease Case fatality rate Associated
(China) score (S3)
Cardiovascular disease 10.5% 100
Diabetes 7.3% 69.5
Chronic respiratory 6.3% 60
Hypertension 6 % 57,1
Cancer 5.6 % 53,3
No health condition 0.9% 8.6

The sources of the “Case fatality rate” are [21, 22]

Bold entries correspond to values of interest with respect to contextual
information such as best performances

Finally, we point out that the term Sy of our measure F
can be tuned:

— 8 can be modified to take into account a time
factor. Indeed, a serie of X-ray images is observed
for each COVID-19 inpatient pointed in [11, 23, 24].
Accordingly, S» can be measured at two timely spaced
X-rays t1 and 1, to take into account the time kinetics of
symptom onset and disease progression for the infected
patient. For this latter case, the infection rate can be
redefined as follows:

f(t2) + malus,
f(),
f(t2) + bonus,

if f(n) > f(t1) + 8 (aggravation)
if | f(2) — f(t)| < 8 (stability)
otherwise (remission)

S =

where f(¢) = (100/n) x N () is the infection rate of the
chest X-ray image captured at a moment #, N(¢) is the
number of detected viral sub-images at a moment ¢, #{ is
inferior to 5, § is threshold fixed to 20, bonus and malus
are a gain and a penalty fixed to (—20 x f(#;))/100 and
(20 x f(2))/100, respectively.

— & can be replaced by another multi-regional CXR
score, named Brixia score, that has been proposed in
[25] for grading the infection according to observed
lung abnormalities.

Experimental study
Performance of tailored CNN models

Table 3 presents performance for classification of normal
and infection cases by using tailored CNN-based architec-
tures. The DenseNet169 architecture has reached best per-
formance with an average classification accuracy of 95.72%
from the Chest X-Ray Images (Pneumonia) dataset.” It is
worth mentioning that similarly to the work from [13],
the DenseNet architecture outperforms the other architec-
tures. The classification accuracies are 97.97%, 96.62% and
92.57% for the class bacterial, virus and normal, respec-
tively (see Table 4). The associated confusion matrix is
shown in Table 5. The performance of our DenseNet
model is competitive with performances obtained by [14]
in average classification accuracy of bacterial and viral
cases (90.7%). The histogram depicted in Fig. 4 provides
a detailed overview about accuracy results obtained with
architectures of different natures for the classification of
chest X-ray images with 4 categories.

As can be seen in Table 4, our RNN-based architecture
is particularly sensitive to pneumonia cases with the blind
COVID-19 test set since it detects pneumonia at 99.3%
for at least 24 COVID-19 infected patients using default
setting. Also, it promisingly detects viral infection for

@ Springer
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Table 3 Comparison of average accuracies obtained on classification using some tailored CNN-based architectures

Data/Network Average accuracy (%)
ResNet34 ResNet50 DenseNet169 VGG-19 Inception
ResNetV2 & RNN
Image size (310 x 310), (310 x 273) (310 x 310), (310 x 273) (310 x 310), (310 x 273) (224 x 224) (300 x 300)
Raw resizing 93.69 93.47 91.89 82.66 -
Original ratio with padding 90.54 93.92 95.72 - -
Splitin 9 & raw resizing = — - - 80.40
Bold entries correspond to values of interest with respect to contextual information such as best performances
Table 4 Classification performance obtained by testing our best trained architectures with two query image sets
Accuracy (%)
Query test set/Class ouput Bacteria Virus Normal Pneumonia
Dataset Chest X-Ray Images (Pneumonia)? by [14] (2-stage binary training outputs) 90.7 (Bact. vs Vir.) 92.8 (Norm. vs Pneu.)
3-class dataset Chest X-Ray Images (Pneumonia)* by DenseNet169 97.97 96.62 9257 -
3-class dataset Chest X-Ray Images (Pneumonia)®* by VGG-19 87.84  81.08 79.05 -

3-class dataset Chest X-Ray Images (Pneumonia)® by Inception ResNetV2 & RNN (majority voting) 86.49  84.46 63.52 -
3-class dataset Chest X-Ray Images (Pneumonia)® by Inception ResNetV2 & RNN (by default) 90.54 83.78 66.89 —
Sensitivity (%)

Query test set/Class ouput Virus Pneumonia
1-class blind set of varied COVID-19 images by DenseNet169 45.51 88.27
1-class blind set of varied COVID-19 images by Inception ResNetV2 & RNN (majority voting) 60.64 95.12
1-class blind set of varied COVID-19 images by Inception ResNetV2 & RNN (by default) 51.72 99.3

2Chest X-Ray Images (Pneumonia) dataset: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
The first row reflects classification results of [14]
Bold entries correspond to values of interest with respect to contextual information such as best performances

Table 5 Confusion matrix with

DenseNet169 Actual/Predicted Bacteria Normal Virus
Bacteria 145 1 2
Normal 0 137 11
Virus 4 1 143

Bold entries correspond to values of interest with respect to contextual information such as best performances

Fig.4 Histogram of ) 100 95049797 o662 99,66 99,32 99,32
classification accuracy obtained g 0054 92,56 93,24 92,56 92,56
for each class by using varied 87,83" 83,78
architecture types with the Chest 20 81,08 79,05
X-Ray Images (Pneumonia) 6689
dataset < ’
3
> 60
e
3
Q
< 40
20
0 ; ; ;
Bacteria Virus Normal Pneumonia
m ResNet50 m DenseNetl69  mVGG-19 Inception ResNetV2 & RNN (by default)
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Table 6 CNN-derived infection rates S estimated from real pairs of successive X-ray images for 5 COVID-19 infected patients

Image pairs f(t) Elapsed days f(t) Observations S
(2 —1t1)

(1,3), Fig. 5 of [11] 9/9 7 9/9 elderly man f(t2)
“improvements”

(1,2), Fig. 1 of [23] 1/9 5 2/9 67-y-old woman f(t)
“wires, attenuation”

(1,3), Fig. 2 of [23] 5/9 8 5/9 36-y-old man f(t2)
“death”

(1,2), case 1, Fig. 5 of [24] 6/9 1 9/9 “worse status” f (t2)+malus

(1,2), case 2, Fig. 5 of [24] 7/9 4 8/9 “worse status” f(t)

60.64% considering majority voting in sequences. We stress
the fact that the 145 COVID-19 images which have been
extracted from [15] are highly heterogeneous. Notably,
these extracted images come from at least 24 different
hospitals over the world. The RNN output results show a

Table 7 Examples of F' values for 9 patients from synthetic data

particularly robust pneumonia detection of COVID-infected
patients and satisfying viral detection in view of the

diversity of exploited radiography sources.

In [15], a histogram shows that significant image quantity
has been acquired during the first week of the start of

Patients

Aggravation factors: values

N

)

S3

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient 7

Patient 8

Patient 9

Age: 65

nb. of infected sub-image: 3

Cardiovascular disease
Age: 55

nb. of infected sub-image: 4

Cardiovascular disease
Age: 75

nb. of infected sub-image: 1

Cancer
Age: 82

nb. of infected sub-image: 1

Cardiovascular disease
Age: 34

nb. of infected sub-image: 5

Diabetes
Age: 18

nb. of infected sub-image: 7

Chronic respiratory
Age: 13

nb. of infected sub-image: 4

No health condition
Age: 56

nb. of infected sub-image: 2

Hypertension
Age: 47

nb. of infected sub-image: 3

No health condition

25.5

72

544

100

0.1

0.1

7.2

2.2

33.33

44.44

11.11

11.11

55.55

71.71

44.44

22.22

33.33

100

100

533

100

69.5

60

8.6

57,1

8.6

0.79415 (79.41%)

0.7582 (75.82 %)

0.59405 (59.40%)

1.05 (> 100%)

0.63025 (63.02%)

0.68935 (68.93%)

0.2657 (26.57%)

0.4326 (43.26%)

0.2206 (22.06%)
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Table 8 Distribution of F values for a patient aged between 60 and 69 considering the possible diseases (rows) and rates of infection (columns

from 0 to 9)
0 1 2 3 4 5 6 7 8 9

No health condition 17,05 22,60 28,16 33,71 39,27 44,82 50,38 55,93 61,49 67,04
Cancer 394 44,95 50,51 56,06 61,62 67,17 72,73 78,28 83,84 89,39
Hypertension 41,3 46,85 52,41 57,96 63,52 69,07 74,63 80,18 85,74 91,29
Chronic respiratory 42,75 48,30 53,86 59,41 64,97 70,52 76,08 81,63 87,19 92,74
Diabetes 47,5 53,05 58,61 64,16 69,72 75,27 80,83 86,38 91,94 97,49
Cardiovascular 62,75 68,30 73,86 79,41 84,97 90,52 96,08 101,63 107,19 112,74

Bold entries correspond to values of interest with respect to contextual information such as best performances

symptoms or hospitalization. Since the quasi-totality of
pneumonia are detected, our models should be able to
operate at an early detection stage.

Also, a histogram shows a significant image distribution
in term of age in between 20 and 80 years old. Since the
Chest X-Ray Images (Pneumonia) dataset® is principally
collected from children (5,232 chest X-ray images) and
since the quasi-totality of pneumonia are detected, models
trained on children chest X-ray image database may be
relevant for detecting pneumonia from adult chest X-ray
images.

Projection with the CNN-based health indicators

Table 6 shows the RNN-derived infection rates S, estimated
from real pairs of successive X-ray images for COVID-19
infected patients. Table 7 details examples of F calculated
for 9 patients from synthetic data. Table 8 gives the
distribution of the F values for a patient aged between 60
and 69 considering the possible diseases (rows) and rates
of infection (columns from O to 9). The corresponding
distribution is illustrated in Fig. 5.
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Fig.5 Graph obtained by representing the distribution of F values for
a patient aged between 60 and 69 considering the possible diseases and
rates of infection given in Table 8

@ Springer

The simulation shows that a patient having 65 years old,
a cardiovascular disease and rate of infection greater than 6
has no hope to recover the health. The Patient 1 of Table 7
that has 65 years old, a cardiovascular disease and rate of
infection of 3 should recover the health (F = 79.41%).

Conclusion

A comparative study is provided for performance evalu-
ation of tailored deep learning models for the detection
of pneumonia cases. Tailored models have shown promis-
ing performances since they all exceeded 84% of average
accuracy on pneumonia detection cases for the pneumonia
reorganized dataset.”> Hence, a patient that has a pneumo-
nia during the epidemic context has a high probability to be
detected by these models. In particular, the InceptionRes-
NetV2 model has detected the minimum of false negatives
to the pneumonia on the COVID-19 blind test set (0.7%).
Moreover, we have shown in our experiments that the
transfer of knowledge from pediatric chest X-ray training
towards infection screening of adults can be efficient. Addi-
tionally, an attempt based on realistic scenarios is done to
provide easy-to-apply health indicators for evaluating infec-
tion rate and aggravation risk to the COVID-19 pneumonia.
Future works may exploit our models to discern between
COVID-19 viral and non-COVID-19 viral pneumonia once
chest X-ray images of COVID-19 will be accessible in suf-
ficient quantity. This should permit to specifically identify
COVID-19 infected patients even in a non-epidemic con-
text. Furthermore, reliability of proposed models must be
cross-checked by RT-PCR tests and clinical tests before
deployment.
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