
Journal of Network and Systems Management, Vol. 14, No. 1, March 2006 (c© 2006)
DOI: 10.1007/s10922-005-9012-7

A Logical Architecture for Active Network
Management

Salvatore Gaglio,1,2 Luca Gatani,1 Giuseppe Lo Re,1,2,3 and Alfonso Urso2

Published online: 4 April 2006

This paper focuses on improving network management by exploiting the potential of
“doing” of the Active Networks technology, together with the potential of “planning,”
which is typical of the artificial intelligent systems. We propose a distributed multiagent
architecture for Active Network management, which exploits the dynamic reasoning
capabilities of the Situation Calculus in order to emulate the reactive behavior of a
human expert to fault situations. The information related to network events is generated
by programmable sensors deployed across the network. A logical entity collects this
information, in order to merge it with general domain knowledge, with a view to
identifying the root causes of faults, and to deciding on reparative actions. The logical
inference system has been devised to carry out automated isolation, diagnosis, and even
repair of network anomalies, thus enhancing the reliability, performance, and security
of the network. Experimental results illustrate the Reasoner capability of correctly
recognizing fault situations and undertaking management actions.

KEY WORDS: Programmable networks; Intelligent systems; Situation calculus; Net-
work ontology.

1. INTRODUCTION

Network management is not only an increasingly important, but also difficult
and demanding task on modern network infrastructures. It is a complex activity,
which very often requires the human intervention to create management plans,
to coordinate network assets, and to face up to fault situations. Because of the
increasing cost of network downtime and the complexity of deployed systems, it
has become crucial to find a reliable way of managing communication networks
and their services. These systems need constant monitoring and probing for the

1 Dip. di Ingegneria Informatica, Università di Palermo, Italy.
2 Istituto di Calcolo e Reti ad Alte Prestazioni, C.N.R. Viale delle Scienze, 90128, Palermo, Italy.
3 To whom correspondence should be addressed at Dip. di Ingegneria Informatica, Università di

Palermo, Italy; E-mail: lore@unipa.it.

127

1064-7570/06/0300-0127/0 C© 2006 Springer Science+Business Media, Inc.

128 Gaglio, Gatani, Lo Re, and Urso

purposes of management, particularly for configuration setting, fault diagnosis,
and performance evaluation, but, as the size of networks increases, it becomes
more and more difficult to extract the right information from them. Conventional
network management facilities have been provided by network vendors in ad hoc
ways, which rely heavily on human effort. However, as networked installations
become larger, more complex, and more heterogeneous, manual network man-
agement is no longer able to cope and conventional approaches are therefore no
longer effective. The complexity of such systems raises the cost of network man-
agement and requires the use of automated standardized tools that can be used in
complex scenarios, across a broad variety of product types. The main purposes of
network management are to maintain a network in healthy operational condition,
to monitor the network status, and to control the network so as to maximize its effi-
ciency. Current network management systems are typically designed according to
a centralized paradigm, where a central station (manager) collects, aggregates and
processes data retrieved from physically distributed devices (agents). Widely de-
ployed standards, such as the Simple Network Management Protocol (SNMP) [1]
of the TCP/IP protocol suite, or the Common Management Information Protocol
(CMIP) [2] of the OSI reference model, are designed according to this strict cen-
tralized model. However, the centralized approach is characterized by a low degree
of flexibility and re-configurability, suffering from severe inefficiencies and scal-
ability limitations: the process of data collection and analysis typically involves
massive transfers of data causing considerable strain on network throughput, as
well as processing bottlenecks at the central entity. Taken together, these problems
suggest that the distribution of management intelligence would offer a rational
approach to overcoming the limitations of the centralized approach. The Internet
Engineering Task Force (IETF) has therefore proposed an approach, known as
RMON (remote monitoring) [1], which introduces a degree of decentralization. A
key aspect is that the collection of management information should be supported
in a timely way, so that the system can react to performance problems. In addition,
monitoring traffic should ideally have a minimal impact on the managed network.
Several distributed architectures for network management have been proposed to
relieve the load from the central management station and to distribute control
tasks by means of the Active Networks technology. Active Networks [3, 4] intro-
duce network dynamic programming and allow an easy deployment of “ad hoc”
solutions in the active nodes on behalf of contingent management tasks. Given
simple management tasks (such, for instance, multiple failure traps, data merg-
ing, automatic backup-link activation), management architectures based on Active
Networks make easy to deploy a distributed strategy. Nevertheless, for more com-
plex tasks, it is still required the human intervention because only experts, who
know the network complexity, can understand a high-level management goal and
can plan a sequence of intermediate steps, in order to reach the objective. In a
traditional network management environment, if a user asks to know the causes of

A Logical Architecture for Active Network Management 129

a network failure, a network expert, according to some strategy, can query the net-
work devices to trace the problem back to its original causes. This paper proposes
a distributed multiagent architecture for network management, where a logical
reasoner acts as an external managing entity capable of emulating the reactive
behavior of a human expert to fault situations. We adopt the well-known theory of
Situation Calculus [5] to define a logical model of the network, and the Reactive
Golog language [6] to implement a reasoner capable of accomplishing generic
high-level management tasks. The logical reasoner allows the representation both
of particular network states, and of their evolution, triggered by the execution
of given actions. Our logical framework for network management is constituted
by two levels, where the upper level is represented by the logical inference sys-
tem acting as an external managing entity capable of directing, coordinating, and
stimulating actions in an active management architecture. To this end, it exploits
the capabilities of the active management framework, which represents the lower
level, and makes possible the deployment of code across the whole network. This
way, our management architecture exploits the potential of “doing” of the Active
Networks technology, conjugated with the potential of “planning,” typical of the
artificial intelligent systems [7]. The originality of this work relies on two dif-
ferent aspects. Firstly, the architecture adopts a logic programming language to
implement a high-level logical reasoner capable both of producing failure diag-
noses, and of generating investigation plans to better define the decision scenario.
Secondly, it is able to plan and carry out the information acquisition by exploit-
ing the Active Network framework [8] that provides simple and effective tools
to capture the right information in the appropriate places of the network. In the
past few years, several notable projects have been proposed in the area of Active
Network management: NESTOR [9], SENCOMM [10], ABLE [11], ANCORS
[12], AVNMP [13, 14], and HiFi [15]. Furthermore, in the area of logical ap-
proach to network management, some proposals have been recently presented
about the adoption of a higher-level knowledge representation (see, for example,
[16] and [17]). The remainder of the paper is structured as follows. Section 2
introduces the general architecture proposed for network management. Section 3
presents the logical approach and the ontology model. Section 4 describes some
experimental scenarios and reports main results. Finally, we draw conclusions in
Section 5.

2. THE ACTIVE ARCHITECTURE FOR NETWORK MANAGEMENT

This section presents the overall architecture, which has been adopted to
implement the system proposed for network monitoring and management. The
general framework, depicted in Fig. 1, shows the main components of our ar-
chitecture: the Logical Reasoner, the Programmable Local Agents, the Global

130 Gaglio, Gatani, Lo Re, and Urso

Fig. 1. The active network management architecture.

Database, and the Network Gateway. The external Logical Reasoner acts primar-
ily as a managing entity for the system, collecting real-time data about the state
of the network, and commanding further monitoring actions, in order to infer root
causes and to decide suitable countermeasures. An external database is connected
to the Logical Reasoner to maintain data summarization of past events. Since
this Global Database (GDB) should contain only the minimal amount of mean-
ingful information, the Logical Reasoner is equipped with an on-line filtering
capability that executes data mining procedures among all the network-logged
data. Furthermore, if a network user submits a query about specific anomalies,
which have already occurred in the past, a new, “ad hoc” instance of the Reasoner
(called Off-Line Reasoner) is executed in order to perform off-line reasoning, thus
exploiting the locally logged node history and the information provided by the
user. The Off-Line Reasoner is modularly designed so that it can load appropriate
modules capable of managing specific queries. The results of its inference pro-
cess are also stored in the GDB, thus enriching the knowledge base of network
events. In order to perform the operational tasks required by the logical entity, an
Active Network environment has been adopted. Active Network programmability
is exploited in order to provide distributed and adaptive agents, which represent
the end points of management communication. In the implementation described
here, both Programmable Local Agents (PLAs), which are able to monitor each
node of the network, and active codes, which perform the actions planned by the
Logical Reasoner across the whole network, have been developed. Furthermore,
each local agent stores the occurrences of events with their related data on its
local memory. These data can be provided when a Logical Reasoner request is
performed to collect data related to past behavior. The interactions between the

A Logical Architecture for Active Network Management 131

Logical Reasoner and the Active Network are managed by the Network Gateway
service.

2.1. Logical Reasoner

The various challenges posed by network management, including real-time
monitoring of network events, past event management, and planning of future
activities, are considered in this section. The management activity is carried out by
the Logical Reasoner that consists of two functional blocks: the On-Line Reasoner
(OnLR), devoted to on-line monitoring, and the Off-Line Reasoner (OffLR), for
off-line reasoning.

The OnLR is responsible for reactive behavior, and needs dynamic represen-
tation of network states that is achieved using the Situation Calculus formalism.
OnLR exploits the sensors located in the network nodes to keep its network rep-
resentation up to date and to collect the events which have already occurred.
Using this information, it can focus its attention on specific network areas and
management issues, in order to determine the causes of the observed abnormal
behaviors. On the other hand, the OffLR has the main purpose of performing “a
posteriori” analyses of network functioning, using the information distributed at
different network nodes and already processed by different system elements. To
this end, it is capable both of reconstructing the entire network state for a given
temporal interval, and of examining the event flow in a limited network area.
Moreover, the OffLR can perform a global reasoning process to analyze general
network behavior and performance. The information deduced by means of this
higher-level analysis can be used, for instance, to detect performance degradation
in the communication infrastructure and to execute opportune optimizations. The
OnLR main module (core module) is a lightweight reactive module which acts as a
network events “sentinel,” receiving notification about significant network events.
In reply to such events, it performs basic reasoning activities, collecting further
information about network state and, if necessary, delegating specialized logical
modules to perform deeper analyses. In order to carry out this task, the OnLR can
send active capsules coding command actions for PLAs. The OnLR core mod-
ule starts its reasoning process whenever it detects an anomaly on the network.
Anomalies reported to OnLR represent fault conditions and are associated to their
local causes by means of the PLAs’ distributed monitoring capabilities. OnLR can
thus detect the root causes of the observed symptoms, identifying network faults
that, due to their global nature, cannot be signaled by local sensors. For instance,
packet losses can be interpreted as possible symptoms of network problems, such
as network disconnection, routing table corruption, network congestion, or loop
existence. However, it is important to notice that the OnLR core module only
manages current events. It is not deputed to reason on past situations, since this
more complex task is performed by OffLR.

132 Gaglio, Gatani, Lo Re, and Urso

2.2. Programmable Local Agents

In [8], it is presented a framework for network management that exploits
active local and mobile agents. The monitored devices are equipped with Pro-
grammable Local Agents. Each PLA maintains a set of sensors, which can be
used to monitor specific aspects of the node. Sensors for capturing early discard-
ing of packets, discovering changes in the routing table, and detecting the state
of neighboring nodes, etc., were extensively developed. It is worth noticing that
exploiting the Active Networks programming capabilities, new external sensors
(i.e., off-the-shelf pieces of software capable of observing certain network vari-
ables) can be plugged into the extensible PLA structure, as they become available.
Internally, each local agent is modeled as a teleoreactive agent [18]. The internal
mechanism adopts predefined local variables to implement the conditional state-
ments of teleoreactive agents. These variables represent the discriminating values
over which filters are installed in order to generate events, which in turn determine
the execution of opportune actions [8]. Sensors are used by the OnLR to acquire
information about network evolution. They perform a twofold task, registering
meaningful data on local databases and notifying, when necessary, those data to
the OnLR. When the OnLR starts, it always enables a basic sensor functioning
level. This functionality allows to notify the occurrence of relevant events which
can be considered key symptoms of fault conditions. On the other hand, when
the OnLR needs some specific knowledge about the network’s dynamic behav-
ior, it “switches-on” sensors, thus enabling the notification service. The Logical
Reasoner can thereby activate more specific PLA services, to perform a deeper
analysis and to detect the root causes of the observed behavior.

2.3. Network Event Base

A Global Database is employed with a view to storing relevant results in-
ferred by Logical Reasoner modules, in order to enable successive analyses of
abnormal behaviors. The queries submitted to the GDB can be intended either to
answer questions directly formulated by the system administrator, or to compute
statistic analysis about network traffic. The OnLR can only add information to
the GDB, whilst the OffLR exploits this information for its own reasoning, and it
can insert new knowledge inferred by its deductive processes. The following are
among the most important GDB relations: Inference, Loop, Disconnection, RT-
Corruption, CongestionArea, AreaNodes, CongestedLink, FlowCongestion, and
TrafficMatrix. The Inference table maintains the inference results obtained by the
OnLR. Loop, Disconnetion, and RTCorruption tables are populated both with the
summarized information obtained from the data in the Inference table, and with the
specialized inferences deduced “a posteriori” by the OffLR. The CongestionArea
table maintains the values which represent the congestion measurements for the

A Logical Architecture for Active Network Management 133

monitored areas. AreaNodes and CongestedLink tables define the monitored areas
as sets of nodes and connecting links. In the FlowCongestion table, the Reasoner
reports references to those flows which are most involved in a congestion situa-
tion. The TrafficMatrix table contains the volume of traffic that flows between all
possible source-destination pairs of the network.

Moreover, each local agent stores the occurrences of events, with their related
data, on its local memory, where a Local Database (LDB) is maintained, in order
to make them available whenever a Logical Reasoner request is performed to
analyze past situations. All data are registered using the XML format, in order to
characterize their information scope easily and to allow a fast retrieval process.
For instance, in order to detect faults which have occurred in the past, the Logical
Reasoner can require some additional information about the network’s dynamic
condition in all nodes belonging to a given area during a given interval of time.
PLAs located at the interested nodes can then process the local databases and single
out the required information, using XML annotation to perform data filtering.

2.4. Gateway

In order to perform its management tasks, the Logical Reasoner sends and
receives XML queries and replies through a Gateway service which carries out
two basic tasks: message multiplexing/demultiplexing, and reliable transmission
toward the monitored devices. The Gateway service provides also the interface
to different Active Network implementation, providing a common management
framework for different Execution Environments (EEs). The service translates the
XML requests to the specific language adopted by the Execution Environment,
and it injects into the network the appropriate active packets to accomplish Rea-
soner requests. In order to assure fault-tolerance, several nodes in the monitored
Active Network can serve as Gateway points. The set of the Gateway services can
be incrementally enriched. Each basic service requires that an EE-specific code
fragment is stored at the Gateway points. This way, Gateway nodes provide trans-
parent access to different Active Network environments. The Logical Reasoner
exploits the Gateway to manage distributed and programmable services, which
are capable of carrying out specific tasks on its behalf (such as the retrieval of a
particular item of information from a node, or the verification of compound tests
on several routers).

3. A LOGICAL APPROACH FOR NETWORK MANAGEMENT

3.1. An Ontology for Networking

The philosophical notion of “Ontology” is inherited by Knowledge Engineer-
ing with the aim to describe explicit specifications of conceptualizations, where

134 Gaglio, Gatani, Lo Re, and Urso

each of them is represented by a set of definitions of elements in a domain [19].
Past efforts [7] of adopting advanced approaches to network management have
revealed an absolute demand of standard representation of the domain knowledge,
i.e. networking entities, protocols, their relationships, actions, events, errors, etc.
In order to perform thorough reasoning on network events, our logical system
needs a systematic representation of networking concepts, including hardware
and software entities, and, more generally, the relationships between real- and
abstract-data types. Ontological representations constitute the key for solving these
challenges, constituting a framework capable of modeling concepts and relation-
ships on some expertise domain, and providing the structural and semantic ground
for computer-based processing of domain knowledge. The definition of a logical
model capable of describing networking concepts is, therefore, one of the main
goals of this work. The internal mechanisms of the reasoning engine must capture
and reflect this ontological view of the domain. In past decades, the complex
nature of networking has required the standardization of all its correlated entities
and activities, and has imposed the adoption of a rigid classification in the well
known Open Systems Interconnection (OSI) Reference Model, which provides a
conceptual framework for computer communication. In our project we carry out
the formalization of all the entities and concepts of the data-link, network, and
transport layers, and of their basic features. The knowledge engineering process
has led us to define the network aspects to be represented and the most suitable
representation form. More precisely, we establish a relationship between the three
managed functional layers and some correspondent layers of dynamic knowledge
representation. In this vision, the lower level view concerns the physical features
of the network, while, for instance, routing devices and their communication links
represent knowledge at a higher level; traffic concepts at transport layer form the
highest level of knowledge we considered. This basic knowledge representation
is integrated with the capability of capturing the dynamic functioning. Therefore,
logical sentences, whose validity depends on the time, are introduced in order
to represent the temporal status of network components; moreover, in order to
model the network as a dynamic system capable of flowing from a given situation
(current state) to a successive one (successor state), we describe the network as an
entity that can perform actions modifying its own configuration.

The expressive Web Ontology Language (OWL) [20], defined by the World
Wide Web Consortium (W3C), is adopted to describe in a standard and interop-
erable format the ontological elements. This language results extremely suitable
for the representation of general knowledge, although in our case it may depend
from temporal situations. The formalized network ontology presents a hierarchical
structure, that clues together classes representing network entities and associations
between them. The hierarchy is shown in Fig. 2 where, for the sake of brevity,
only the two upper levels are presented. Classes model hardware and software
entities forming the communications infrastructure, events raised in the network,

A Logical Architecture for Active Network Management 135

Fig. 2. Network ontology hierarchy.

actors playing into the network (managing entities and managed devices), their
actions, monitoring and management tools, and traffic flowing through the net-
work. Hardware entities are strictly related to the structure of the network, since
they represent, for instance, network nodes (such as routers, switches, hosts, etc.),
communications links, and data-link interfaces. Furthermore, relationships among
classes are formalized using associations that represent categories such as “be-
longs to” (e.g. “an interface belongs to a node”) or connects to” (e.g. “an interface
is connected to another one, by means of a link”), thus defining the network
topology. Software entities model some important, nonphysical elements, such as
routing tables, queues associated with network interfaces, variables characterizing

136 Gaglio, Gatani, Lo Re, and Urso

the protocols status, datagrams, and so forth. The dynamic behavior of the network
entities is represented using both class properties that model the entity status, and
cross-references to the actors involved in the status modification. Hardware and
software entities, expressed in the ontology, try to capture both the static, and the
dynamic behavior of the network.

However, in order to understand the mechanisms adopted by the logical
engine to perform reasoning about the network condition, it is necessary to model
also the network actors, the management tools, and how the formers use the latters
to perform management tasks. Network dynamic behavior is represented by events,
occurring during the time, that are related both to entity status variations, and to
network traffic.

The management architecture involves sensors deployed on the network in
order to capture network events. Sensors are modeled by a subclass of Manage-
mentTool class, which in turn is specialized in more subclasses related to the
specific events that must be monitored. It is worth noticing that the ontology hi-
erarchy also describes the network programmability issued by the AN paradigm
through the Capsule subclass of the ManagementTool class. The class Command
Action, subclass of the Action class, is defined to model the actions performed
by the network managing entities. This class includes all the actions that the
programmable agents in the network can perform. The Notify Action class, also
subclass of the Action class, includes the actions performed by the remote man-
aging agents in order to notify the events captured by programmed sensors to
the central managing entity. Generic network events are modeled using a gen-
eral class, Event, and they own a property describing their abnormal or normal
nature. In Fig. 3, we present a schema showing the ontology classes modeling
the network events managed by the system. This basic knowledge will enable the
Logical Reasoner to interpret and relate several events in order to deduce their root
causes, whose captured events represent the external symptoms. Among the events
represented in the ontology, there are also those associated to the traffic flowing
through the network. Their representation is necessary, for instance, to perform
reasoning about traffic loads in the network, or to diagnose incipient congestion
situations. Network traffic and related resources are modeled by the TrafficEntity
class, that is further specialized in two subclasses, Datagram and Flow. Finally,
the network data transmission involves the usage of some network resources (for
instance, link bandwidth and queue buffer space). The binding between data and
resources is modeled using associations between the corresponding TrafficEntity
subclasses and Link and Queue classes.

3.2. Dynamic Logical Reasoning

The management system proposed is based on the definition of the normal
operating conditions, and on the abnormalities detection. In general, alarms are

A Logical Architecture for Active Network Management 137

F
ig

.3
.

Ta
xo

no
m

y
of

m
an

ag
ed

ev
en

ts
.

138 Gaglio, Gatani, Lo Re, and Urso

generated in the network when abnormalities are detected. In alarm-based fault de-
tection systems, a single fault will often cause a large number of alarms; moreover,
several faults may coexist causing a cascade of alarms. For this reason, our system
was designed with the aim to correlate alarms, and to isolate their root causes in
order to efficiently handle them. The overall reasoning process starts with an initial
phase of information retrieval. During this phase, the system can acquire the basic
data over which it can establish successive reasoning processes. In analogy with
human behavior, this phase may correspond to the initial observation performed by
a human operator to achieve an overall knowledge of the reasoning domain. The
process adopted to manage a network fault can be distinguished in a succession
of steps [21], related to the alarm condition signaling, the error analysis with its
consequential step of acquisition of additional data useful for a correct diagnosis,
and finally the correct fault recognition and correction. In the alarm signaling
phase the signal of a network failure can be risen either by an user, or by a sensor
previously installed, which for instance may signal to the Logical Reasoner that a
packet has been discarded on a network device. Once the failure has been notified,
the Logical Reasoner, using the previously stored information, tries an inferential
process (error analysis) in order to determine the root cause of the failure. In the
positive case, the fault is recognized and the successive step is performed. In the
negative case, i.e. when the knowledge base does not contain the right elements to
deduce the root cause, the logical entity starts an additional data retrieval, decid-
ing actions devoted to the positioning of new sensors with the aim to collect new
diagnostic data. The whole process stops when the Logical Reasoner is able to
determine the failure nature. After the Error Analysis has produced the diagnostic
inference, the Reasoner can command some opportune actions, in order to fix the
discovered fault (error correction).

As previously mentioned, the Logical Reasoner acts in a twofold way: through
on-line reactive monitoring, or by offline analyses of past network behavior. Since
these activities are quite different and use different network representations, we
designed a logical framework capable of executing them as distinct tasks. To
this end, the Logical Reasoner consists of two functional blocks (see Fig. 4):
the On-Line Reasoner (OnLR), devoted to on-line monitoring, and the Off-Line
Reasoner (OffLR), capable of performing complex “a posteriori” analyses of
network functioning.

3.2.1. On-Line Reasoning
The OnLR is responsible for reactive behavior, and it needs a dynamic rep-

resentation of network states, achieved by the adoption of the Situation Calculus
[5] formalism. The Situation Calculus is exploited to model the network and its
dynamic evolution. It is a second order language specifically designed for repre-
senting dynamically changing worlds. Such a calculus captures the dynamicity of
a system, since it allows the definition of actions, which move the system from a

A Logical Architecture for Active Network Management 139

Fig. 4. Logical reasoner functional blocks.

given state to another one. The formalization of the world is performed through
well-formed formulas of the first order logic, whilst the dynamism is captured
through the primitive concepts of state, primitive action, and fluent. We can think
the state as a snapshot of the world at a determined moment. All changes to the
world can be seen as the result of some primitive actions. While the Situation Cal-
culus allows the representation of simple actions, Reactive Golog is an advanced
logic programming language, which allows the modeling of more complex be-
haviors. The adoption of Reactive Golog language is due to its expressiveness
and to its capability of providing simple and linear logical frameworks to the
programmers.

Reactive Golog is a logic programming language, which inherits the basic
elements of Situation Calculus, extending it with procedures and rules. In Reactive
Golog there are two types of actions: primitive actions, executed by the system,
and exogenous actions, executed by the external world. Therefore, there are two
kinds of interaction between the system and the external world: the system changes
the world by its actions, and the external world influences the system behavior by
exogenous actions. Generally, dynamic systems are not totally isolated by the rest
of the world, but they continually receive solicitations and they interact with the
external world. The Reactive Golog rules allow these interactions describing how
the world evolves when an external action is performed. This aspect is the so called
“reactive behavior.” Reactive system behavior is implemented by a concurrent
interleaving of a control procedure with a procedure for interrupt management.
Conventionally this procedure is called rules. OnLR exploits the sensors located in
the network nodes to keep its network representation up-to-date, and to collect the
events which have already occurred. Using this information, the OnLR focuses its
attention on specific network areas and management issues, in order to determine
the causes of the observed abnormal behaviors. Since the continuous changes of

140 Gaglio, Gatani, Lo Re, and Urso

network status, the OnLR needs to know and to represent the relevant changes of
network features. World evolution is represented by a set of fluents, denoting the
truth values of network properties in a given situation. The OnLR, see Fig.4, is
composed of a main module (core module) responsible of the reactive functioning
and some additional modules devoted to specific tasks. The Core module is a
lightweight reactive module that acts as a network event “sentinel,” receiving
notifications about significant network events. In reply to such events, it performs
a basic reasoning activity, collecting further information about network states and,
if necessary, delegating specialized logical modules to perform deeper analyses.
In order to carry out the above tasks, the OnLR can issue command actions to
programmable local agents deployed on network nodes. The OnLR Core module
starts its deductive reasoning whenever it detects an abnormal event on the network.
Abnormalities reported to the OnLR represent fault conditions and are associated
to their local causes by means of the system’s distributed monitoring capabilities.
The OnLR exploits its logical reasoning mechanism to carry out deeper analyses
by means of the activation of additional dynamic management modules. It can
thus detect the root causes of the observed symptoms, identifying network faults
that, due to their global nature, cannot be signaled by local sensors. For instance,
packet losses can be interpreted as possible symptoms of certain network problems,
such as network disconnection, routing table corruption, network congestion, or
loop detection. In more detail, whilst network disconnection and routing table
corruption can be immediately detected by the OnLR Core module using notified
data and its general domain knowledge, loop detection is performed by the network
itself by means of a distributed coordination technique that exploits local network
services programmability, provided at each node.

3.2.2. Off-Line Reasoning
Besides the reactive behavior and the dynamic monitoring of network events

carried out by the OnLR modules, it is also necessary to provide a logical entity
(the Off-Line Reasoner) capable of performing complex, “a posteriori” analyses
of network functioning. This logical entity uses the information distributed at
different network nodes and already processed by different system elements (i.e.,
information passed by the OnLR, or previously deduced and stored in a global
database, or logged by nodes in their local databases). To this end, the OffLR is
capable both of reconstructing the entire network state for a given interval of time,
and of examining the event flow in a limited network area. Moreover, the OffLR
can perform a global reasoning process to analyze general network behavior and
performance.

The information deduced by means of this higher level analysis can be used,
for instance, to detect performance degradation in the communication infrastruc-
ture, and to execute a suitable algorithm to improve routing settings.

A Logical Architecture for Active Network Management 141

4. EXPERIMENTAL RESULTS

In order to test and evaluate the logical inference system, we use an experi-
mental cluster of real network nodes, which allows the setup of an experimental
test-bed constituted by 40 active nodes equipped with PLAN [22] and ANTS [23]
EEs, and super-visioned by the reasoner through the ANGate [8] software package.
Each testbed router hosts a PLA capable of tracing all relevant network events,
such as status transitions, variable functioning parameters, and traffic flows. In
order to study the system reliability and the impact of main architectural parame-
ters, we consider several topologies under three different experimental scenarios.
Firstly, we analyze the fault discovering capabilities, considering several trials for
each kind of failure that our system can currently manage. In the second scenario,
we study the Reasoner capability of undertaking effective reparative actions when
network performances degrades. Finally, the third set of experiments are run to
test traffic sensor accuracy. Firstly, we carry out experiments dealing with the
OnLR. Core capability of anomaly detection and management. The packet losses
are considered anomaly symptoms, that activate the logical engine in order to infer
the anomaly root causes. For instance, when a packet loss due to TTL expiration
occurs, the system tries to discover the existence of a routing loop along the path
from the source and destination nodes. To this aim, the OnLR Core invokes a
distributed monitoring service, implemented by means of a simple active capsule
that traverses the network from source to destination and stores each visited node.
If the capsule reaches an already visited node, the PLA installed on this node ex-
ecutes the code fragment which carries a notification to the OnLR Core. In order
to test fault discovering capability, we measure both the system sensitivity, and
specificity. The former is calculated as the percentage ratio between the number of
faults detected and the ones generated. The latter, expressing a measure of system
capability of avoiding false alarms, can be defined as the ratio between the number
of true negatives and the sum of true negatives and false positives. Figure 5(a)
shows the experimental results on fault detection. For each kind of failure, we
report the percentage of detected cases, lost cases, and false positives, with respect
to the total number of faults generated. Experimental results outline that most of
the events are detected, thus proving good Reasoner sensitivity. In particular, the
figure shows a sensitivity degree of about 88.6% in loop detection, of 85.7% in
routing table corruption detection, of 100% in network disconnection detection,
of 86.7% in interface failure detection, and of 87.5% in link failure detection. The
OnLR also achieves good specificity values (93.5% in disconnection detection,
90.6% in routing table corruption detection, 98.7% in loop detection, 99.1 and
89.5% respectively in link and interface failures detection. From a deeper analysis
of experimental data, it arises that false positives and missed fault detections are
more frequent during network critical situations, when management information
is subject to packet losses and communication failures. Such occurrences claims

142 Gaglio, Gatani, Lo Re, and Urso

0

2,0

4,0

6,0

8,0

1

2,1

snoitcennocsiD

C
as

e
P

er
ce

n
ta

g
e

detareneg detceted elbariaper deriaper deriaper ton

(b)

Fig. 5. Fault detection and reparation.

A Logical Architecture for Active Network Management 143

the adoption of a separated network management infrastructure, capable of in-
creasing management system reliability and fault tolerance. In the following set
of experiments we analyze the reparative capabilities of the Reasoner towards
disconnection occurrences. The system checks the occurrence of a disconnection
between any pair of nodes, verifying if the nodes belong to different network “is-
lands.” This erroneous situation can be corrected turning on backup links which
reconnect the “islands” detected.

Results of these experiments are illustrated in Fig. 5(b), where the percentage
of reparable disconnections and of successful repair actions are shown. We can
observe that in almost all the cases when the OnLR detects a disconnection, it is
also able to undertake a suitable reparative action. In the last experimental scenario,
we study the system behavior for traffic monitoring. The OnLR TrafficMonitor
is responsible of traffic sensor tuning on the basis of the network congestion
situation. It continuously monitors flows in order to tune activity of sensors,
collecting the data which will be used by the OffLR module in order to extract
meaningful statistical information about network performances. (Fig. 6 shows a
state diagram, representing the OnLR TrafficMonitor reasoning activity.) In order
to measure traffic sensor accuracy, we compare the rate temporal function of
generated traffic flows with the estimated instantaneous rate observed by sensors
installed on the nodes along the flows. To this end, we use an “ad hoc” network
traffic generator, which is able to produce flows according to the traffic models
reported in literature [24]. We generate several traffic sessions modeling the rate
variation as a step function, to test the sensor accuracy when high rate variations
occur. As an example, Fig. 7 reports the instantaneous traffic rate, measured at four
randomly chosen network nodes, as a function of time. Experimental results show
that flow sensors are able to identify the rate of each different traffic session, and to
produce a good estimation of their statistical parameters. High rate observations
are characterized by a higher noise component that can be reduced decreasing
sensors sampling rate.

5. CONCLUSIONS

This paper proposes an innovative approach for Network Management, com-
plementing a logical reasoner with the versatility of Active Networks and collect-
ing the advantages that come from logical reasoning and network programmability.
The approach allows the implementation of a powerful system capable of perform-
ing management tasks typically executed by human experts, and of dealing with
unusual network situations better than traditional management systems. In order
to perform high-level management tasks and to coordinate management activities
at the low-level network infrastructure, the inferential engine performs reason-
ing on a detailed ontological model capable of describing as better as possible
networking concepts. The logical reasoner is able to deduce knowledge and find

144 Gaglio, Gatani, Lo Re, and Urso

Fig. 6. State diagram of the OnLR TrafficMonitor reasoning.

correlations from data and events which are distributed on different network areas
and which occur in different instants. The inferential engine provides reasoning
on a high-level network model and behaves as an intelligent management agent,
which coordinates the management activities at the low-level Active Network

Fig. 7. Traffic monitoring measurements.

A Logical Architecture for Active Network Management 145

infrastructure. The framework allows the programming of intelligent manage-
ment entities, which adopt the Active Networks management framework for the
sensorial and actuator tasks, and the inferential logical system for the high-level
behavior reasoner.

REFERENCES

1. W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd edn., Addison-Wesley, Reading,
MA, 2003.

2. L. Raman, OSI Systems and Network Management, IEEE Communications Magazine, Vol. 36,
No. 3, pp. 46–53, 1998.

3. D. L. Tennenhouse and D. J. Wetherall, Towards an Active Network architecture, ACM Computer
Communication Review, Vol. 26, No. 2, pp. 15–20, 1996.

4. D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minde, Survey of
Active Network research, IEEE Communications Magazine, Vol. 35, No. 1, 1997.

5. J. McCarthy, Situations, actions and causal laws, in M. Minsky (ed.), Semantic Information
Processing, MIT Press, Cambridge, MA, pp. 410–417, 1968.

6. R. Reiter, Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems, MIT Press, Cambridge, MA, 2001.

7. S. Mazumdar and A. A. Lazar, Objective-Driven Monitoring for Broadband Networks, IEEE
Transactions on Knowledge and Data Engineering, Vol. 8, No. 3, 1996.

8. A. Barone, P. Chirco, G. Di Fatta, and G. Lo Re, A management architecture for Active Networks,
Proceedings of IEEE International Workshop on Active Middleware Sendees, Edinburgh, UK, pp.
41–48, July 2002.

9. Y. Yemini, A. V. Konstantinou, and D. Florissi, NESTOR: An Architecture for Self-Management
and Organization, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 5, 2000.

10. A. W. Jackson, J. P. G. Sterbenz, M. N. Condell, and R. R. Hain, Active Network monitoring and
control: The SENCOMM architecture and implementation, Proceedings of IEEE DARPA Active
Networks Conference and Exposition, San Francisco, CA, May 2002.

11. D. Raz and Y. Shavitt, An Active Network Approach for Efficient Network Management, number
1653 in LNCS, Springer-Verlag, Berlin, 1999.

12. L. Ricciulli, P. Porras, P. Lincoln, P. Kakkar, and S. Dawson, An adaptable network control and
reporting system (ANCORS), Proceedings of IEEE DARPA Active Networks Conference and
Exposition, San Francisco, CA, May 2002.

13. S. F. Bush and A. Kulkarni, Active Networks and Active Network Management: A Proactive
Management Framework, Kluwer, Dordretch, 2001.

14. S. F. Bush, Active virtual network management prediction: Complexity as a framework for pre-
diction, optimization, and assurance, Proceedings of IEEE DARPA Active Networks Conference
and Exposition, San Francisco, CA, May 2002, pp. 534–553.

15. E. Al Shaer, Active Management Framework for Distributed Multimedia Systems, Journal of
Network and Systems Management, Vol. 8, No. 1, pp. 49–72, 2000.

16. D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, A knowledge plane for the
Internet, Proceedings of ACM SIGCOMM, pp. 3–10, August 2003.

17. M. Wawrzoniak, L. L. Peterson, and T. Roscoe, Sophia: An Information Plane for Networked
Systems, ACM Computer Communication Review, Vol. 34, No. 1, pp. 15–20, 2004.

18. N. J. Nilson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, San Fransisco, CA,
1998.

146 Gaglio, Gatani, Lo Re, and Urso

19. T. R. Gruber, A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition,
Vol. 5, No. 2, pp. 199–220, 1993.

20. G. Antoniou and F. van Harmelen, Web Ontology Language: OWL, in S. Staab and R. Studer
(eds.), The Handbook on Ontologies in Information Systems, Springer-Verlag, Berlin, 2003.

21. L. Kerschberg, R. Baum, A. Waisanen, I. Huang, and J. Yoon, Managing faults in telecommunica-
tions networks: A taxonomy to knowledge-based approaches, Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, pp. 779–784, 1991.

22. M. Hicks, P. Kakkar, J. T. Moore, C. Gunter, and S. Nettles, PLAN: A Packet Language for
Active Networks, Proceedings of ACM International Conference on Functional Programming,
pp. 86–93, September 1998.

23. D. J. Wetherall, J. Guttag, and D. L. Tennehouse, ANTS: A toolkit for building and dinamically
deploying network protocols, Proceedings of IEEE OPENARCH, San Francisco, CA, April 1998.

24. Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, On the characteristics and origins of Internet
flow rates, Proceedings of ACM SIGCOMM, August 2002.

Salvatore Gaglio graduated in Electronic Engineering from University of Genoa, Italy, in 1977. He
is a professor of computer science and artificial intelligence at the University of Palermo, Italy. His
present research activities are in the areas of artificial intelligence and robotics. He is a member of
IEEE, ACM, and AAAI.

Luca Gatani received the Laurea degree in Computer Engineering, in 2003, from University of
Palermo, Italy, where he is currently working for a PhD degree in Computer Engineering. His research
interests include peer-to-peer systems, network management, multicast transmissions, and wireless
sensor networks.

Giuseppe Lo Re received the Laurea degree in Computer Science from University of Pisa in
1990, Italy, and PhD in Computer Engineering from University of Palermo, Italy in 1999. Currently he
is an associate professor at the University of Palermo. His research interests are in the area of computer
communication networks and distributed systems. He is a member of IEEE Communication Society
and ACM.

Alfonso Urso received the Laurea degree in Electronic Engineering and the Ph.D in Systems
Engineering from University of Palermo, Italy, in 1992 and 1997, respectively. In 2000, he joined
the Italian National Research Council (CNR) where, currently, he is a Researcher in systems and
computer engineering. His current research interests are in the area of computer networks and artificial
intelligence.

