
Cross-layer architectures for autonomic communicationsCross-layer architectures for autonomic communications

Mohammed Abhur Razzaque, Simon Dobson, Paddy Nixon

Publication datePublication date

01-01-2007

Published inPublished in

Journal of Network and Systems Management;15(1), pp. 13-27

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Razzaque, M.A., Dobson, S.and Nixon, P. (2007) ‘Cross-layer architectures for autonomic communications’,
available: https://hdl.handle.net/10344/2544 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

A Cross-Layer Architecture For Autonomic

Communications

M.A. Razzaque1, Simon Dobson and Paddy Nixon

Systems Research Group
School of Computer Science and Informatics

UCD Dublin IE
abdur.razzaque@ucd.ie

Abstract. Layered architectures are not sufficiently flexible to cope with the
dynamics of wireless-dominated next-generation communications. Most existing
architectures and approaches depend purely on local information and provide only
poor and inaccurate information gathering at the global scale. De-layered or cross-
layer architectures may provide a better solution: cross-layering allows interactions
between two or more non-adjacent layers in the protocol stack. We propose a new
cross-layer architecture which provides a hybrid local and global view, using
gossiping to maintain consistency. We evaluate our proposal informally in terms of
communication complexity and in terms of its ability to support the “self-*”
properties being proposed within the autonomic communications community.

Keywords: Cross-Layer Architecture, Autonomic Communications, Gossiping.

1 Introduction

The worldwide success of the Internet is dominated by the layered architecture, but a strict
layered design is insufficiently flexible to cope with the dynamics of wireless-dominated
next-generation communications. Recent studies [1] show that careful exploitation of
some cross-layer protocol interactions can lead to more efficient performance of the
transmission stack – and hence to better application layer performances – in different
wireless networking scenarios.

Cross-layer design breaks away from traditional network design, where each layer of
the protocol stack operates independently and exchanges information with adjacent layers
only through a narrow interface. In the cross-layer approach information is exchanged

1 This work is partially supported by Science Foundation Ireland under grant number 04/RP1/1544,

“Secure and Predictable Pervasive Computing.”

between non-adjacent layers of the protocol stack, and end-to-end performance is
optimized by adapting each layer against this information Cross-layering is not the simple
replacement of a layered architecture, nor is it the simple combination of layered
functionality: instead it breaks the boundaries between information abstractions to
improve end-to-end transportation.

One obvious shortcoming of the strict layering is the lack of information sharing
between protocol layers. This hampers optimal performance of the networks, since shared
layer information is the prerequisite for many forms of performance optimization. On the
other hand, cross-layer systems shift the research landscape away from optimizing the
performance of individual layers, and instead treat optimization as a problem for the entire
stack. The technique consists of taking into account information available from different
levels [2], not necessarily adjacent, in order to create a system much more sensitive to its
environment, load and usage. Essentially we replace the narrow inter-layer interface with
a wider, richer and more holistic view of the network’s issues, goals and constraints.

The assumptions in the wired IP stack are inadequate for wireless networking, and
TCP/IP is known to suffer from performance degradation in mobile wireless
environments. This is because such environments are prone to packet losses due both to
high bit error rates and mobility-induced disconnections. TCP interprets all packet losses
as an indication of congestion and (inappropriately) invokes congestion control
mechanisms, which leads to degraded performance. Cross-layering between Link Layer
and Transport Layer is an easy solution to this problem [3].

On the other hand, it is clear from the recent initiatives in autonomic computing and
autonomic communications [4, 5] that there is a need to make future networks self-
behaving, in the sense that they work in an optimal way with “endogenous” management
and control, with minimum human perception and intervention. Autonomic
communication is the vision of next-generation networking which will be a self-behaving
system with properties such as self-healing, self-configuration, self-organization, self-
optimization and so forth – the so-called “self-*” properties. To attain this self-behaving
system within existing strictly-layered approaches may be possible to certain extent, but
will not (we claim) leverage all the possible optimizations. We consider cross-layer
architectures to be better suited to achieving the self-optimization, self-configuration and
other “self-*” properties targeted by autonomic approaches.

Most existing architectures (including GRACE [6], WIDENS [7], MobileMan [8]) rely
on local information and views, without considering the global networking context or
views which may be very useful for wireless networks in optimizing load balancing,
routing, energy management, and even some self-behaving properties like self-
organization. Only CrossTalk [9] is based on a (even partially) global view of the
network. On the other hand, POEM [10] is the only architecture considering self-
optimization that could be helpful for autonomic communication. Collecting and
maintaining network-wide, global statistics can be expensive, while global actions are
hard to co-ordinate; however, the effects of such systems can often be dramatic, and they
can address problems that are difficult to detect, diagnose or solve using purely local
information. To explore the impact of this idea, we propose a new cross-layer architecture

based on building and maintaining a global view of the network’s state and constraints,
utilizing gossiping for gathering information from neighboring nodes. For scalability and
overhead issues, we limit gossiping processes among direct neighbors.

Section 2 describes related study on cross- layer architectures. Our contribution, a
cross-layer architecture for autonomic communications is presented in section 3. Section 4
briefly describes the difficulties implicit in cross-layer interactions. And section 5
concludes with some directions for future work.

2 Related Study

Research on cross-layer networking is still at a very early stage, and no consensus exists
on a generic cross layer infrastructure or architecture. However, the importance of a sound
architecture to handle the proliferation of cross-layer operations in wireless as well other
communications media is clear, especially in autonomic systems for which properties
need to be specified and maintained with minimal manual configuration and intervention
[11]. A number of proposals for cross layer designs and their corresponding architectures
have been published in the literature. Most of these architectures are relying on node-local
view and very few utilize both the local view as well as network-wide global view.

GRACE (Global Resource Adaptation through Co-opEration) [6] is a cross layer
adaptation framework. All system components (hardware, network, and operating system)
and applications are allowed to be adaptive. These adaptive entities co-operate with each
other to achieve a system-wide optimal configuration, for example to maximize system
utility, in the presence of changes in the available resources or application demands.
However, its cross-layer approach includes no explicit consideration of cross layering
within the networking layers or protocol stack. WIDENS (Wireless DEployable Network
System) [7] has been proposed with an aim to acquire the interoperability, cross layering
and re-configurability at the same time. This cross layering architecture seems a
promising one where protocol optimization is based on the local state information but it is
still in the validation stage and so lacks any real measurement of efficiency especially in
terms of performance.

The MobileMan [8] architecture presents, along with the strict layering, a core
component, Network Status, which functions as a repository for information that
uniformly manages the cross-layer interaction while respecting the principle of dividing
functionalities and responsibilities in layers. The approach aims to optimize overall
network performance with respect to local state information by increasing local
interaction among protocols, decreasing remote communications, and consequently saving
network bandwidth. Performance improvement verifications are yet to be published.
ECLAIR [12] is local-view-based, efficient cross-layer architecture for wireless protocol
stacks. Along with legacy protocol stack it consists of two main components: an
Optimizing Sub-System, the cross layer engine which contains many Protocol Optimizers,
which are the “intelligent” components of it, and Tuning Layers provide the necessary

APIs to the protocol optimizers for interacting with various layers and manipulating the
protocol data structures. There is no processing overhead on the existing stack since the
optimizing subsystem executes in parallel to the protocol stack.

CrossTalk [9] is the only (as far as we are aware) cross-layer architecture, which has
the ability to reliably establish a network-wide, global view of the network under multiple
metrics. Having such a global view, a node can use global information for local decision
processes in conjunction with a local view containing node-specific information
contributed by each layer of the stack or system component. To keep overheads low, no
additional messages are sent: instead the local information taken from the local view is
piggybacked onto outgoing packets. Piggybacking implies that it is quite unlikely that any
node will obtain fully accurate global view under many likely models of data exchange.
Even with an uncertain and poor global view, however, CrossTalk has shown performance
improvement in a load balancing algorithm specifically reducing per-hop packet delay and
bottlenecks. It seems reasonable to expect such performance to be improved by improved
global modeling of the network and this expectation is the encouragement for the new
cross-layer architecture.

Researchers have addressed the importance of “knowledge plane” or “knowledge
network” for the adaptability or context awareness in next generation communications.
Clark et al [13] describe the Knowledge Plane as a new communication paradigm where a
network can assemble itself given a set of high-level instructions and constraints, re-
assemble itself as requirements change, automatically discover when something goes
wrong, and automatically fix a detected problem or explain why it cannot do so. This AI-
based approach considers an additional network layer between the network and the
application layer, as the place in which nearly all network control activities take place.
Mulvenna and Zambonelli [14] present an abstract architecture for knowledge networks
that addresses the key issues of how both physical contextual knowledge and social
knowledge from the users of communication networks can be used to form a knowledge
space in support of autonomic agents dealing with network elements and applications. To
avoid the burden of an additional distributed computational layer, and to more
successfully promote cross-layer interactions, they consider knowledge networks as
managed by existing components at the application and network levels. Both proposals
are at the abstract level: still, these are inspiring issues for the use of a Knowledge Plane
in our architecture. However, our cross-layer, architecture-oriented knowledge plane
approach is somewhat different than these approaches.

It is possible to utilize cross-layer information to attain some of the self-behaviors of
autonomic communications mentioned earlier. POEM (Performance-Oriented Model) [10]
is perhaps the first initiative towards developing a cross-layer based self-optimizing
protocol stack specifically for autonomic communication. For the optimization purposes it
utilizes local state information. The basic design criterion is self-optimization is a control-
plane issue where the normal functions of the protocol stack should not be compromised,
with added cross-layer benefits being layered on top. The system is being investigated
both formally and through simulation. In their patent filing, Sadler et al [15] link cross-
layer information to self-healing. In this architecture, a Management Plane exists along

side of the protocol stack to stores information obtained from each protocol layer in the
Cross-Layer Platform and nodes use this information to help the routing protocol maintain
network reliability in the presence of failures. Interestingly none of the self-* behaviors in
autonomic computing and communication are highly orthogonal, which means there is
some dependency between them – self-healing is partly supporting self-organization, and
vice versa.

3 A Cross-Layer Architecture Based On a Global View

Both OSI and TCP/IP adopt a bottom-up approach driven by physical and network
constraints, which can make it hard to capture and respond to top-down user demands or
contexts. Cross-layer design can help capture these concerns by providing a more uniform
framework within which to capture and disseminate information at different semantic
levels. Realizing the importance of cross-layering – and specifically cross-layering
architectures with a network-wide global view – in next-generation communications, we
propose an alternative cross-layering architecture based on a combination of node-local
and network-global views. “Global view” is a broad term suggestive of centralization and
reduced scalability, but we will try to establish and maintain a network-wide view of
multiple metrics depending on the focus of the network without undue impact. Metrics
such as load, battery status and so on in can be very useful in attaining self-organization or
self-healing in an autonomic network, and having a global view allows a node to evaluate
its own status against the average within the network at any instant. For example, a node
could decide whether it is carrying more traffic then the average node and how overloaded
it is compared to the average, and could utilize this information for routing and load
balancing.

As this architecture is based on local information as well as global and the sources of
information are different, we require two different schemes to gather information. This
leads to the use of a knowledge plane consisting of two entities to manage information
efficiently. One entity is responsible for the organization of locally available information
from different layers in the local node’s network stack, provided by each layer of the
protocol stack independently: battery status, load, neighbor count, signal-to-noise ratio
transmit power, bit error rate, velocity and so forth. Each protocol layer can access this
data and use it for local optimizations. The sum of this information represents the state of
the node or local view on the network. The other data-management entity establishes a
network-wide or global view summarizing information of the same types collected in the
local view. To produce the global view we use an information dissemination procedure
based on gossiping.

3.1 Motivation of this Architecture

Why another architecture? We believe that existing approaches contain some excellent
approaches to particular problems in the construction of autonomic networks with cross-
layer optimization: however, there is also only a fairly weak integration of the various
techniques into a systems-level view of cross-layer interactions.

Cross-layer interactions can be managed by information exchange between layers, or
through a more structured knowledge plane approach. Per-layer interactions are
potentially more efficient, but also expose significantly more design information to the
individual layers, which can lead to unnecessary coupling between implementations. It
also tends to bind information to its source, in the sense that a layer will always have to
commit to the layer originating information it requires for optimization. A knowledge
plane decouples information from its source, abstracts the internal designs of layers and
provides a central facility within which to provide reasoning and other advanced features.

Self-* properties are almost always phrased in whole-network terms: self-optimization,
for example only makes sense if the network has a global property to optimize against, as
individual local optimizations are unlikely in general to converge to a global optimum. A
naïve implementation of a knowledge plane would inevitably be a performance
bottleneck. Maintaining a global view without introducing performance and reliability
concerns implies constructing the global view in a distributed manner, accepting the
inevitable problems with latency and inconsistency.

Maintaining a distributed representation of knowledge means either locating some of
the information at a particular node, or replicating the entire knowledge plane on each
node, or a combination of the two. Since we do not want to over-commit to a particular
strategy, we use a gossiping approach coupled with information summarization and fusion
to maintain local copies of the knowledge plane. The local component acts as a gateway to
the complete knowledge base, containing both local and summarized global views
important metrics. A client layer need not know the source of particular information, and
tailoring the gossiping algorithm provides a single point for handling robustness and
latency issues. Using randomized selection of nodes with which to gossip, for example,
produces a random communication structure that behaves rather like noise and does not
introduce hot-spots or other artifacts. We conjecture that the overheads of such a scheme
will be greater than the piggy-backing used in CrossTalk but significantly less than in
deterministic flooding [16].

3.2 Overview of the Architecture

Alongside the existing layers, the Knowledge Plane is the key element of the architecture.
Direct communication between layers and a shared knowledge plane across the layers are
the two widely used cross-layer interactions polices. Because of the improved separation
and management possibilities we prefer to utilize the knowledge plane for the
architecture. The following are the main elements of the architecture:

 Existing TCP/IP layers: These provide normal layering support when it is necessary,
as well the information to the knowledge plane related to different layers to maintain local
view of the node. This allows full compatibility with standards and maintains the benefits
of a modular architecture, as it does not modify each layer’s core functionality.

Contextors for different layers: Each layer in the existing protocol stack has a
corresponding contextor, which will act as their corresponding interface between the layer
and the knowledge plane. Each of these contextors acts as a “tuner” between a layer and
the knowledge plane. Possible functionality for manipulating protocol data structures is
built into the contextors: no modification is required to the existing protocol stack. This
facilitates incorporation of new cross layer feedback algorithms with minimum intrusion.
Generally a protocol implementation has data structures for control and data, with a
protocol’s behavior being determined by its control data structure. A contextor is
responsible for reading and updating the control data structures when it is necessary.

Knowledge Plane: A common knowledge plane database is maintained to encapsulate
all the layers’ independent information as well as the network-wide global view, which
can be accessed by all layers as needed. For modularity it maintains two entities
responsible for maintaining the local and global views.

A knowledge plane can act in one of two ways: as a simple database with local and
global view related information, or as a database with intelligence, which can manipulate
its information to make inferences. The former allows each layer to provide whatever
querying and optimization functions it requires, but forces all the complexity for
information fusion into the contextors; the latter allows certain fusion and uncertain-
reasoning functions to be encapsulated within the knowledge plane, making them
available uniformly to the contextors and simplifying their local coding – at a cost of
complicating the knowledge plane with the consequent risks of performance problems and
feature interaction. There is clearly a trade-off in functionality that requires careful
exploration.

Interaction between different layers and the knowledge plane through client programs
can be reactive (responding to changing context) or proactive (anticipating changes and
provisioning accordingly). Generally the interactions between different layers and the
knowledge plane are event-oriented, which suggests a reactive scheme; on the other hand,
the knowledge plane can maintain a model of the network and act autonomously to issue
its own events. This leads to improved performance if the model leads to a correct
proactive adaptation, but can be detrimental if the projection is wrong.

 In our architecture we are considering the database with intelligence as shown in
figure 1. The knowledge plane consists of the database and necessary optimizing
algorithms. The database is separated into local view and global view for isolation and
management purposes, although it appears unified to clients.

Gossiping: Gossiping is considered as one of the most promising data-dissemination
mechanisms in peer-to-peer or distributed systems. There are number of algorithms that
can be classified as reactive, proactive and periodic. As there are few comparative
performance studies amongst these algorithms, it is difficult choose the most suitable

algorithm for a particular purpose. In our case we propose a periodic gossiping approach,
possibly with out-of-band “immediate” signaling for important changes.

 The gossiping service is built on top of existing TCP/UDP, and is responsible for
gathering information from other nodes to generate the network-wide view at the host
node. At each exchange the gossiping service chooses another node in the system (either
randomly or with some weighted preference) and exchanges its local state with that node.
In this architecture we will consider a gossiping exchange as an application-level event
which will trigger the knowledge plane to take the necessary actions.

3.3 Interactions between Protocol Layers and the Knowledge Plane

Events and the state variables of different layers are the two most important concerns for
the interaction between the layers and the knowledge plane. This interaction is the most
delicate issue in a cross-layer architecture. There are two basic models:

• The knowledge plane registers with the contextors, and receives events whenever
a change in the layer’s context occurs; or

• The knowledge plane periodically retrieves state information form all layers.

We will here consider only the first approach further, as we believe it is better-suited to
autonomic systems. The interaction policy between the layers and the knowledge plane
through the contextors is summarized below (and as shown in figure 1):

Step 1: A contextor attaches to the control data structure information of the appropriate
layer.

Step 2: The database part of the knowledge plane registers with the contextors to
receive change events.

Step 3: Contextors notify the knowledge plane’s database about events (timeout,
disconnections, etc) and pass the necessary information regarding these context changes,
which are incorporated into the model. Optimization algorithms monitor the database
waiting for “guard” predicates to become true, and are executed when their guards are
satisfied.

Step 4: The algorithms access the model to acquire any additional information they
need in order to make their decisions. Algorithms are not restricted in which parts of the
model they may access.

Step 5: Control actions are propagated back through the contextors to the layers’
control plane.

Fig. 1. Sample interactions between different layers and the Knowledge Plane

3.4 Application Scenario

Prospective application areas for this architecture could be optimization of load balancing,
routing, energy management in wireless networking and obtaining self-behaving
properties of autonomic communications like self-organization. All of these applications
require some knowledge about their neighbors, which can be provided by our architecture.

As an application scenario, consider the case of a wireless network self-organizing to
maintain communications between nodes. Self-organization can be defined as the
emergence of system-wide adaptive structure and functionality from simple local
interactions between individual entities [17]. An application scenario with 7 nodes is
shown in figure 2. In scenario (a) node s has a request for node d1 and it is using the route
s-n1-n2-d1. In this case, we will consider all the nodes are gossiping knowledge (the
global view) about their primary neighbors, so node s has knowledge about n1, n1 has
about n2 and n3 and so on. If after transmission begins n2 fails, existing (local-view
only) routing protocols would have n2 receiving the packet, determining d1 to be dead,
and finally sending a “node unreachable” error message to s which wastes all the
resources committed to the exchange. Using a global view, however, if d1 and d2 are
giving almost same type of services a suitable global view would allow n2 to determine
that in case of d1’s failure d2 can meet the request of s. This requires making information
about the service-level capabilities of a node available to the routing layer, which is

facilitated by our approach and can easily be expressed as an optimization algorithm. This
leads to scenario (b) where nodes have re-organized because of the death of d1, and once
n2 gets the request from s it reroutes to d2 instead of d1 and fulfills the request. With this
action, our architecture can conserves energy and minimizes latency by eliminating the
overhead required to invalidate the current route, establish a new route, and retransmit the
request. Moreover, it can preserve the original route when failed node becomes available.
Essentially we provide in this scenario a generalized form of content- or service-based
routing, without committing extra specific resources or network topology to the task and
so retaining complete freedom to adopt other strategies as required.

Fig. 2. Application Scenario

4 The Difficulties Implicit in Cross-Layer Interactio ns

Cross-layer design is not an easy task, as co-operation among multiple protocol layers has
to be coordinated without leading to conflicts or (worse) loops. A common drawback is
the lack of a systematic approach for cross-layer designs overall, not just its interactions:
individual optimizations run at cross purposes, violating the structural architecture
principles for only shortsighted performance gains, and could lead to serious
consequences through unexpected feature interactions.
 Once layering is broken, the luxury of designing a protocol in isolation is lost too.
Unbridled cross-layer interactions can create loops, and from a control theory point of
view become a hazard to the stability of the system. Loosely controlled interactions can
also result in “spaghetti code,” stifling further innovation and proliferation on the one
hand, and increasing the cost for maintenance on the other. In severe case, the overall
system will have to be redesigned. (These problems are detailed in [11] with examples.)
At a critical time in the history of wireless communication, we need to note some of the
adverse possibilities and exercise proper caution. Cross-layer design for new network
architecture is the trend; however we think there are a few principles that have to be
followed:

• Cross-layer design should be holistic instead of being fragmenting

• Layering should remain, for proliferation and longevity of the system
• Cross-layer interactions should be done in a controlled way, and preferably

through a common optimization interaction interface
• Dependencies between the interaction protocol parameter have to be examined

to avoid loops
Cross layering tries to share information amongst different layers, which can be used as

input for algorithms, for decision processes, for computations, and adaptations. This
process of sharing has to be coordinated and structured somehow since cross layering
could potentially worsen the performance problem that it intends to solve. This is due to
several effects. Optimization processes at different layers could try to optimize a common
metric in opposite directions. Furthermore, two different metrics could have negative
impacts on each other when trying to optimize them, such as energy efficiency and delay.
A general problem is that altering a metric at one layer often has an effect on other layers
implicitly. For example, altering the transmission power on the physical layer can have an
effect on the network layer as nodes might disappear from the direct transmission range.

5 Conclusions and Future Work

The worldwide success of the Internet has led to the domination of the layered
architecture, but a strict layered design is not flexible enough to cope with the dynamics of
next-generation communications. Moreover exploitation of some cross-layer protocol
interaction can lead to more efficient performance of the transmission stack (and hence
better application layer performances) in different wireless networking scenarios. Most
existing architectures depend on the local information and only CrossTalk depends on
local as well as network wide global view. Even with the uncertain and poor global view
gathering process, CrossTalk has shown performance improvement in load balancing
algorithm. With a more accurate global view gathering process we can hope for further
improvements, and with this in mind we proposed an alternative cross-layering
architecture for autonomic communications which is based on local information as well as
global information and gossiping will be the mechanism to collect the global view related
information. The use of gossiping provides more impact that piggy-backing but keeps
overheads more controlled than flooding, and allows the time constants and latencies of
information to be varied widely.

Our proposed architecture is still in the design stage. We are currently engaged in
exploring how we may provide cross-layer optimization of TCP/IP, simulating existing
TCP enhancements and comparing them to a novel version whose adaptations are driven
from a knowledge plane populated using our gossiping technique. This will allow us to
evaluate both the gossiping approach and the various cross-layer parameters that can be
used to influence TCP behavior, as well as comparing them against established
approaches with less cross-layer influence.

References

1. Srivastava, V. and Motani, M, “Cross-Layer Design: A Survey and The Road Ahead”, IEEE
Communications Magazine, Volume 43, Issue 12, Page(s): 112 – 119, Dec. 2005

2. Simon Dobson, “Putting meaning into the network: some semantic issues for the design of
autonomic communications systems”, In Mikhail Smirnov, editor, Proceedings of the 1st IFIP
Workshop on Autonomic Communications, volume 3457 of LNCS, Springer Verlag, 2005,pp:
207-216

3. H. Balakrishnan, “Challenges to reliable data transport over heterogeneous wireless networks”,
Ph.D. Dissertation, The University of California at Berkeley, USA, 1998

4. ‘Autonomic Communication Forum’, HYPERLINK "http://www.autonomic-communication-
forum.org" http://www.autonomic-communication-forum.org

5. ‘Autonomic Communications Initiatives’ HYPERLINK "http://www.autonomic
communication.org" www.autonomic-communication.org

6. Daniel G.Sachs et al, “GRACE: A Hierarchical Adaptation Framework for Saving Energy”,
ACEED 2005

7. Dzmitry Kliazovich and Fabrizio Granelli, “A Cross-layer Scheme for TCP Performance
Improvement in Wireless LANs”, Globecom 2004, IEEE Communications Society, pp. 841-
844

8. Marco Conti, Gaia Maselli, Giovanni Turi, Sylvia Giordano “Cross layering in mobile Ad Hoc
Network Design”, IEEE Computer Society, pages 48-51, February 2004

9. Winter, R.; Schiller, S.; Nikaein, N.; Bonnet C., “ CrossTalk: A Data Dissemination-based
Cross-layer Architecture for Mobile Ad-hoc Networks”, IEEE Workshop on Applications and
Services in Wireless Networks (ASWN 2005), Paris, June 2005

10. X. Gu, X. Fu.H. Tshofenig, and L. Wolf, “Towards Self-optimizing Protocol Stack for
Autonomic Communication: Initial Experience”, Proceedings of the 2nd IFIP International
Workshop on Autonomic Communication (WAC'05), Springer Lecture Notes in Computer
Science Vol. 3854 (LNCS), October, 2005, pp: 186-201

11. V. Kawadia and P.R. Kumar, “A Cautionary Perspective on Cross-Layer Design”, IEEE
Wireless Communications, February, 2005, pp.3-11

12. V. T. Raisinghani and Sridhar Iyer, “ECLAIR: An Efficient Cross Layer Architecture for
Wireless Protocol Stacks”, WWC2004

13. D. Clark et al., "A Knowledge Plane for the Internet", Proceedings of the 2003 ACM
SIGCOMM Conference, Karlsruhe (D), ACM Press, 2003

14. M. Mulvenna, F. Zambonelli, "Knowledge Networks: the Nervous System of an Autonomic
Communication Infrastructure", 2nd IFIP Workshop on Autonomic Communication, LNCS
No. 3854, 2006

15. C. Sadler, W. Chen, and L. Kant. , “Cross-Layer Self-Healing in a Wireless Ad-Hoc Network”,
U.S. Patent filed April 2005

16. M. Lin, K. Marzullo, S. Masini, "Gossip versus deterministic flooding: Low message overhead
and high reliability for broadcasting on small networks", UCSD Technical Report TR CS99-
0637

17. Prehofer, C.; Bettstetter, C., “Self-organization in communication networks: principles and
design paradigms”, IEEE Communications Magazine, July 2005 Page(s): 78 - 85

	Cross-layer architectures for autonomic communications

