Skip to main content
Log in

An Architecture for Network Congestion Control and Charging of Non-cooperative Traffic

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

This paper proposes an architecture capable of reducing network congestion caused by the intense use of non-cooperative traffic. A charging scheme is imposed to all traffic that is carried over the UDP protocol (non-cooperative) given its intrinsic priority over TCP. Prices are calculated according to the degree of starvation undergone by cooperative TCP flows. When TCP flows experience a low performance, charges are high for non-cooperative flows and so the architecture tends to block new incoming UDP traffic. Knowledge about flows status is obtained through the use of flow protocol technology. Resources are reserved using firewall rules and custom-queueing mechanisms. An implementation of the architecture is made and tests show the effectiveness of our proposal in a real network scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Internet usage statistics—the internet big picture. URL: http://www.internetworldstats.com/stats.htm (2008)

  2. Global internet information provider. URL: http://www.comscore.com/press/release.asp?press=2444 (2008)

  3. Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the internet. IEEE/ACM Trans. Netw. 7(4), 458–472 (1999)

    Article  Google Scholar 

  4. Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control, IETF Network Working Group, RFC 2581 (1999)

  5. Key, P., Massouli, L., Bain, A., Kelly, F.: Fair internet traffic integration: network flow models and analysis. Ann. Telecomm. 59, 1338–1352 (2004)

    Google Scholar 

  6. Vickrey, W.S.: Pricing in urban and suburban transport. Am. Econ. Rev. 53, 452–465 (1963)

    Google Scholar 

  7. Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59, 251–260 (1969)

    Google Scholar 

  8. Arnott, R., Small, K.: The economics of traffic congestion. Am. Sci. 82(5), 446–455 (1994)

    Google Scholar 

  9. Chiou, S.W.: Optimization of congestion pricing road network with variable demands. Appl. Math. Comput. 195, 382–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Levinson, D.: Micro-foundations of congestion and pricing: a game theory perspective. Transp. Res. Part A 39, 691–704 (2005)

    Google Scholar 

  11. Henderson, T., Crowcroft, J., Bhatti, S.: Congestion pricing: paying your way in communication networks. IEEE Internet Comp. 5(5), 85–89 (2001)

    Article  Google Scholar 

  12. Cocchi, R., Shenker, S., Estrin, D., Zhang, L.: Pricing in computer networks—motivation, formulation, and example. IEEE/ACM Trans. Netw. 1(6), 614–627 (1993)

    Article  Google Scholar 

  13. MacKie-Mason, J.K., Varian, H.R.: Pricing congestible network resources. IEEE J. Sel. Areas Commun. 13(7), 1141–1149 (1995)

    Article  Google Scholar 

  14. Nagle, J.: Congestion Control in IP/TCP Internetworks, pp. 11–17. Ford Aerospace and Communications Corporation (1984)

  15. Lefelhocz, C., Lyles, B., Shenker, S., Zhang, L.: Congestion control for best-effort service—why we need a new paradigm. IEEE Netw. 10–19 (1996)

  16. Shenker, S.: Fundamental design issues for the future internet. IEEE JSAC 13(7), 1176–1188 (1995)

    Google Scholar 

  17. Lai, Y., Chien, S.: A TCP-friendly congestion control to guarantee smoothness by slack term. In: IEEE ICCCN’04, pp. 261–267. (2004)

  18. Van, N.H., Popov, O., Popova, I.: Combined model for congestion control. In: 28th International Conference on Information Technology Interfaces, pp. 657–662. (2006)

  19. Kohler, E., Handley, M., Floyd, S.: Designing DCCP: congestion control without reliability. In: SIGCOMM’06, pp. 27–38. (2006)

  20. Ott, T.J., Lakshman, T.V., Wong, L.H.: SRED: stabilized RED. In: IEEE INFOCOM’99, vol. 3, pp. 1346–1355. (1999)

  21. Gao, X., Schulman, L.J.: Feedback control for router congestion resolution. In: PODC’05. (2005)

  22. Wang, J., Tang, A., Low, S.H.: Maximum and asymptotic UDP throughput under CHOKe. In: SIGMETRICS’03, pp. 82–90. (2003)

  23. Tang, A., Wang, J., Low, S.H.: Understanding CHOKe—throughput and spatial characteristics. IEEE/ACM Trans. Netw. 12(4), 694–707 (2004)

    Article  Google Scholar 

  24. Yilmaz, S., Matta, I.: On Class-based Isolation of UDP, Short-lived and Long-lived TCP Flows, View on NCSTRL. Boston University, Boston (2001)

    Google Scholar 

  25. Xu, Y., Gurin, R.: Individual QoS versus aggregate QoS: a loss performance study. IEEE/ACM Trans. Netw. 13(2), 370–383 (2005)

    Article  Google Scholar 

  26. Luo, H., Wu, D., Ci, S., Argyriou, A., Wang, H.: Quality-driven TCP friendly rate control for real-time video streaming.In: IEEE Global Telecommunications Conference—GLOBECOM’08, pp. 1–5. (2008)

  27. Feng, J., Xu, L.: On the time scale of TCP-friendly admission control protocols. In: IEEE International Conference on Communications—ICC’08, pp. 45–51. (2008)

  28. Roberts, J.W.: Internet traffic, QoS and pricing. Proc. IEEE 92(9), 1389–1399 (2004)

    Article  Google Scholar 

  29. Byun, J., Chatterjee, S.: A strategic pricing for quality of service (QoS) network business. In: Proceedings of the Tenth Americas Conference on Information Systems, pp. 2561–2572. (2005)

  30. Wang, X., Schulzrinne, H.: Pricing network resources for adaptive applications. IEEE/ACM Trans. Netw. 14(3), 506–519 (2006)

    Article  Google Scholar 

  31. Varian, H.R.: Intermediate Microeconomics: A Modern Approach, 7th edn. W. W. Norton & Co, New York (2006)

    Google Scholar 

  32. Salles, R.M., Barria, J.A.: Fair and efficient dynamic bandwidth allocation for multi-application networks. Comput. Netw. 49(6), 856–877 (2005)

    Article  Google Scholar 

  33. Liao, R., Campbell, A.T.: Dynamic edge provisioning for core IP networks. In: Proceedings of the IEEE International Workshop on Quality of Service, pp. 148–157. (2000)

  34. Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP congestion avoidance algorithm. ACM Comput. Commun. Rev. 27(3), 1–15 (1997)

    Article  Google Scholar 

  35. Salles, R.M., Barria, J.A.: Lexicographic maximin optimisation for fair bandwidth allocation in computer networks. Eur. J. Oper. Res. 185, 778–794 (2008)

    Article  MATH  Google Scholar 

  36. Duan, Z., Zhang, Z., Thomas, Y., Gao, L.: A core stateless bandwidth broker architecture for scalable support of guaranteed services. IEEE Trans. Parallel Distrib. Syst. IEEE 15(2), 167–182 (2004)

    Article  Google Scholar 

  37. Bouras, Ch., Stamos, K.: Performance analysis of adaptive admission control algorithms for bandwidth brokers. J. Netw. Syst. Manage. 15(2), 191–218 (2007) Springer

    Article  Google Scholar 

  38. Bouras, Ch., Primpas, D.: Architectures and performance evaluation of bandwidth brokers. Int. J. Netw. Manage. 19(2), 101–117 (2009) Wiley

    Article  Google Scholar 

  39. Quittek, J., Zseby, T., Claise, B., Zander, S.: Requirements for IP flow information export (IPFIX). In: IETF-WG, RFC 3917. (2004)

  40. Persico, G.: NEye, http://neye.unsupported.info. Last access Nov 2008

  41. Keshav, S.: An Engineering Approach to Computer Networking. Addison-Wesley, Reading (2001)

    Google Scholar 

  42. Lima, S.R., Carvalho, P., Freitas, V.: Distributes admission control for QoS and SLS management. J. Netw. Syst. Manage. 12(3), 397–426 (2004) Springer

    Article  Google Scholar 

  43. Nam, S.Y., Kim, S., Sung, D.K.: Measurement-based admission control at edge routers. IEEE/ACM Trans. Netw. IEEE 16(2), 410–423 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge all the support received by the Military Institute of Engineering - IME, Brazilian Army, and by the CNPq - MCT, Brazilian Government, during the execution of this work. Also, we also would like to thank the anonymous referees for their time and constructive comments, which contributed significantly and positevely to the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo M. Salles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salles, R.M., Carvalho, J.M.A. An Architecture for Network Congestion Control and Charging of Non-cooperative Traffic. J Netw Syst Manage 19, 367–393 (2011). https://doi.org/10.1007/s10922-010-9185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-010-9185-6

Keywords

Navigation