Skip to main content
Log in

Network Performance Improvement of All-Optical Networks Through an Algorithmic Based Dispersion Management Technique

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Network blocking performance due to wavelength continuity constraint in a well-connected all-optical network can be efficiently reduced by utilizing wavelength converters. Nevertheless, the introduction of high bit rate optical services with strict tolerance to signal quality would have a serious impact on the overall network performance since in this circumstance, a request can be blocked due to unacceptable signal quality of potential routes. Chromatic dispersion tolerance, for example, is reduced by the square of the bit rate. By extending the typical application of parametric wavelength converter in solving a wavelength continuity problem, this paper aims to enhance chromatic dispersion management through an improved wavelength conversion algorithm. Consequently, significant improvement in network performance has been demonstrated through reduction in the dispersion effect when the proposed engineering rule is included in the conversion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, H., Jue, J.P., Mukherjee, B.: A review of RWA approaches for wavelength routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000)

    Google Scholar 

  2. Yoo, S.J.B.: Wavelength conversion technologies for WDM network applications. J. Lightwave Tech. 14(6), 955–966 (1996)

    Article  Google Scholar 

  3. Yamawaku, J., Takara, H., Ohara, T., Takada, J., Morioka, T., Tadanaga, O., Miyazawa, H., Asobe, M.: Low-crosstalk 103 channel x 10 Gb/s (1.03 Tb/s) wavelength conversion with a Quasi-phased-matched LiNbO3 waveguide. IEEE J. Quantum Electron. 12(4), 521–528 (2006)

    Article  Google Scholar 

  4. Jansen, S.L., Khoe, G.-D., De Waard, H., Spälter, S., Weiske C., J., Schöpflin, A., Field, S.J., Escobar, H.E., Sher, M.H.: Mixed data rate and format transmission (40-Gbit/s nonreturn-to-zero, 40-Gbit/s duobinary, and 10-Gbit/s non-return-to-zero) by mid-link spectral inversion. Opt. Lett. 29(20), 2348–2350 (2004)

    Article  Google Scholar 

  5. Yates, J.M., Rumsewicz, M.P., Lacey, J.P.R.: Wavelength converters in dynamically reconfigurable WDM networks. IEEE Commun. Surv. 2(2), 2–15 (1999)

    Google Scholar 

  6. Okonkwo, C., Almeida, R.C. Jr., Martin, R.E., Guild, K.M.: Performance analysis of an optical packet switch with shared parametric wavelength converters. IEEE Commun. Lett. 12(8), 596–598 (2008)

    Article  Google Scholar 

  7. Watanabe, S., Takeda, S., Chikama, T.: Interband Wavelength Conversion of 320 Gb/s (32 × 10-Gb/s) WDM signal using a polarization-insensitive fiber wave mixer, In Proceedings of ECOC, 85–86 (1998)

  8. DeSalvo, R., Wilson, A.G., Rollman, J., Schneider, D.F., Lunardi, L.M., Lumish, S., Agrawal, N., Steinbach, A.H., Baun, W., Wall, T., Michael, R.B., Itzler, M.A., Fejzuli, A., Chipman, R.A., Kiehne, G.T., Kissa, K.M.: Advanced components and sub-system solutions for 40 Gb/s transmission. J. Lightwave Tech. 20(12), 2154–2181 (2002)

    Article  Google Scholar 

  9. Pereira, H.A., Chaves, D.A.R., Bastos-Filho, C.J.A., Martins-Filho, J.F.: OSNR model to consider physical layer impairments in transparent optical networks. Photonic Netw. Commun. 18(2), 137–149 (2009)

    Article  Google Scholar 

  10. Azodomolky, S. et al.: A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks. Comput. Netw. 53(7), 926–944 (2009)

    Article  Google Scholar 

  11. Fan, Y., Wang, B.: Impairment-aware ordered scheduling in dual-header optical burst switched networks. Photonic Netw. Commun. 19(1), 90–102 (2010)

    Article  MathSciNet  Google Scholar 

  12. Kuipers, F.A., Beshir, A.A., Orda, A., Mieghem, P.F.A.V.: Impairment-aware path selection in translucent optical networks, Technical Report, Delft University of Technology (2008)

  13. Tordera, E.M. , Martinez, R., Muoz, R., Casellas, R., Pareta, J.S.: Improving IA-RWA algorithms in translucent networks by regenerator allocation, In: Proceedings of ICTON, pp.4 (2009)

  14. Namiki, S.: Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers. J. Lightwave Tech. 26(1), 28–35 (2008)

    Article  Google Scholar 

  15. Li, J.C., Hinton, K., Dods, S.D., Farrell, P.M.: Novel Outage Probability based RWA algorithm, In: Proceedings of OFC, pp. 3 (2008)

  16. Zulkifli, N., Idrus, S.M., Farabi, M.A.: Enhanced performance of wavelength converted all-optical networks through dynamic dispersion compensation. In: Proceedings of ICCS, pp.3 (2010)

  17. Zulkifli, N., Almeida, R.C. Jr., Guild, K.M.: Efficient resource allocation of heterogeneous services in transparent optical networks. J. Opt. Netw. 6(12), 1349–1359 (2007)

    Article  Google Scholar 

  18. Willner, A.E., Hoanca, B.: Fixed and tunable management of fibre chromatic dispersion. In: Hoanca, B., Hoanca, B. (eds) Optical Fiber Telecommunications IVB, pp. 642–724. Academic Press, San Diego (2002)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the administration of Universiti Teknologi Malaysia (UTM) especially Research Management Centre (RMC) for the financial support through Grant with vote number 03J55.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiatulhuda Zulkifli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zulkifli, N., Idrus, S.M., Supa’at, A.S.M. et al. Network Performance Improvement of All-Optical Networks Through an Algorithmic Based Dispersion Management Technique. J Netw Syst Manage 20, 401–416 (2012). https://doi.org/10.1007/s10922-011-9217-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-011-9217-x

Keywords

Navigation