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Abstract Ternary content addressable memories (TCAMs) are widely used in

network devices carrying out the core operation of single-operation lookups.

TCAMs are the core component of many networking devices such as routers,

switches, firewalls and intrusion detection/prevention systems. Unfortunately, they

are susceptible to errors caused by environmental factors such as radiation. TCAM

errors may have significant impact on search results. In fact, only one error in a

TCAM can cause 100 % of search keys to have wrong lookup results. Therefore,

TCAM error detection and correction schemes are needed to enhance the reliability

of TCAM-based systems. All prior solutions require hardware changes to TCAM

circuitry and therefore are difficult to deploy. In this paper, we propose
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TCAMChecker, the first software-based solution for TCAM error detection and

correction. Given a search key, TCAMChecker probabilistically decides to verify

the lookup result. If TCAMChecker decides to verify the lookup result then it

performs two parallel lookups for the given search key. If the lookup results do not

match then at least one error is detected and is corrected by using a backup error-

free memory. Note that the probability of lookup verification can be tuned for

tradeoff between performance and reliability. A higher probability of lookup veri-

fication provides a more reliable TCAM system at the cost of performance. Our

proposed TCAMChecker can be easily deployed on existing TCAM-based net-

working devices to improve the system reliability.

Keywords Intrusion detection systems � N-version programming �
Ternary content addressable memory

1 Introduction

Ternary Content Addressable Memory (TCAM) is a special type of memory. For

random access memory (RAM), a bit has only two possible values (i.e., 0 or 1), and

the input is the index and the output is the content of the memory at that index.

Whereas, a bit in TCAM has three possible values: 0, 1, or *, where * means ‘‘don’t

care’’. Each entry in TCAMs is an array of 0s, 1s, or *s. TCAMs work in a reverse

manner as compared to RAMs: the input to a TCAM chip is a packet header (i.e., a

search key) of 0s and 1s, and the output is the index of the first entry that the key

matches where decisions are stored [1]. A search key matches an entry if and only if

their bits of 0s and 1s match. For example, 1,001 matches a TCAM entry 10**.

Furthermore, a TCAMs searches the entire memory in one operation, so it is

considerably faster than RAMs. In essence, a TCAM is a parallel search machine,

not just memory.

TCAMs are the core component of many networking devices such as routers,

switches, firewalls and intrusion detection/prevention systems. One major task

performed by TCAMs is packet classification, the processing of finding the first rule

that a given packet matches in a rule list. In TCAM-based packet classification,

rules are stored in the TCAM in ternary format. Thus, when a packet comes, only

one TCAM lookup is needed. The result of the TCAM lookup is the index in the

memory where packet decisions, such as accept or drop, are stored. This superior

constant lookup performance is the key reason that many networking devices use

TCAMs to implement their lookup operations.

A TCAM bit may flip to any of the other two values of 0, 1, or * due to

environmental impacts. Memory and electronics in general are susceptible to non-

persistent faults, called soft errors, due to radiation events that generate enough

electricity to cause a bit to flip in memory or for a transistor to trigger or fail to

trigger [2, 3]. TCAMs are even more susceptible to soft errors than RAMs because

of much higher circuit density [4]. Furthermore, the soft errors in TCAMs are more

damaging than the soft errors in RAMs. While a soft error in RAM only causes one

lookup to fail, a soft error in a TCAM chip can cause many different lookups to fail
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due to the first matching semantics: the lookup result of a search key is the index of

the first entry that the key matches [5]. For example, if a TCAM entry ‘‘1**’’

changes to ‘‘100’’, then the lookup results of the three keys ‘‘101’’, ‘‘110’’, and

‘‘111’’ may become erroneous. In fact, a single erroneous entry in a TCAM can

cause 100 % of search keys to have erroneous lookup results in the worst case.

TCAMs are increasingly prone to more soft errors as the area efficiency of memory

devices decreases [5]. Furthermore, Mastipuram et al. [5] reported that soft errors

induced the highest failure rate of all other reliability mechanisms combined in

TCAMs. Consequently, it is important to ensure reliability in TCAM operations

because soft errors can potentially jeopardize their application in mission-critical

network management applications.

Figure 1 shows different effects of soft errors in TCAMs. Note that the index

returned by an erroneous lookup may be smaller or greater than the index returned

by a correct lookup. Figure 1a shows an example TCAM table without errors, on

which the lookup result for search key 0010 is the second entry. Figure 1b shows an

implementation of the table in Fig. 1a where the last bit in the first entry is flipped

from 1 to 0. On this table, the lookup result for search key 0010 is the first entry.

Figure 1c shows an implementation of the table in Fig. 1a where the third bit in the

second entry is flipped from * to 0. On this table, the the lookup result for search key

0010 is the third entry. Moreover, some soft errors do not affect the lookup result of

any search key in a TCAM. For example, the first bit in the fourth entry in Fig. 1c

erroneously flipped from * to 1. However, this error does not affect any lookup. In

this paper, we do not consider such benign errors as they cause no harm. In the rest

of this paper, the term TCAM errors refers to harmful TCAM errors.

1.1 Limitations of Prior Work

Due to the ternary nature and first match semantics of TCAMs, traditional methods

of mitigating the effects of soft error, such as error correcting codes, are difficult to

apply to TCAMs. Prior TCAM error detection and correction schemes [4, 6–9] all

require hardware modifications to TCAM circuitry. Such changes often lower

performance and increase TCAM die area. Increasing die area directly increases

manufacturing cost in semiconductor industry, including TCAM fabrication.

Furthermore, the cost of manufacturing TCAM chips of new design is prohibitive

[10]. Recently, Kirishnan et al. [7] have proved that any error correcting codes for

(a) (b) (c)

Fig. 1 Effects of TCAM soft
errors
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TCAM, even assuming at most one erroneous bit per entry, will require at least an

extra two times die area.

1.2 Proposed Approach

TCAMChecker idea is inspired by N-version programming [11, 12] and back-

to-back testing [13]. N-version programming works by giving the same requirement

specification to N teams to independently design and implement N programs using

different algorithms, languages, or tools. The resulting N programs are executed in

parallel with a decision selection mechanism, which is deployed to examine the

N results for each input from the N programs and selects a correct or ‘‘best’’ result.

N-version programming method has been used for building fault-tolerant software

in a variety of safety-critical systems built since the 1970s, such as railway

interlocking and train control [14], flight control [15], and nuclear reactor protection

[16]. Back-to-back testing is associated with N-version programming. It is used to

test the resulting N versions before deploying them in parallel. Back-to-back testing

works as follows. First, a suite of test cases needs to be created. Second, for each test

case, N programs are executed in parallel and the N results are cross-compared.

Finally, all discovered discrepancies need to be investigated and errors discovered

in the investigation need to be corrected.

In this paper, we propose TCAMChecker, the first pure software-based solution

for TCAM error detection and correction. TCAMChecker assumes that any bit in a

TCAM entry can go erroneous. Given a search key, TCAMChecker probabilistically

decides whether it should verify the lookup result. If yes, TCAMChecker performs

two independent lookups for the search key; if the lookup results disagree, one error

is guaranteed to be detected and TCAMChecker corrects it accordingly using

backup table stored in an error-free memory such as ECC-RAM (ECC stands for

Error Correction Codes) or NVRAM (Non-volative RAM). Figure 2 shows the

architecture of TCAMChecker. To enable two independent lookups, TCAMChecker

stores two copies of the same table in the TCAM. By setting the probability of
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Fig. 2 TCAMChecker
architecture
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TCAM lookup verification, TCAMChecker provides a fine grain and adjustable

mechanism for trading system performance for accuracy. In terms of accuracy,

TCAMChecker has no false positives, but has false negatives with an extremely

small probability. The false negative probability can be tuned by changing the

probability of TCAM lookup verification. In terms of performance, majority of

packets only incur a single lookup because most lookups are not going to result in

errors. This claim is validated during the experimental evaluation of TCAMCheck-

er. It is important to note here that the software component of TCAMChecker is not

a bottleneck in the packet processing pipeline. The only component of TCAM-

Checker that is implemented in software is the one that matches lookup results. The

matching of two integers on a typical processor with clock speed in the order of

gigahertz (GHz) consumes much less time than a lookup on a typical TCAM with

clock speed in the order of megahertz (MHz).

1.3 Advantages Over Prior Work

TCAMChecker is the first software only method that can detect and fix errors during

the search process. TCAMChecker has many advantages over prior TCAM error

detection and correction schemes. First, it requires no hardware changes to TCAM

circuitry. Therefore, it can be easily deployed on existing TCAM-based systems,

unlike solutions in the prior work. Adopting TCAMChecker could be as simple as

updating firmware or software. It incurs low cost as TCAM chips do not need to be

specially fabricated. Second, TCAMChecker provides excellent flexibility to

tradeoff between performance and reliability by adjusting the verification rate.

Third, the performance and cost of TCAMChecker do not depend on the maximum

number of erroneous bits in an entry. In contrast, many prior TCAM detection and

correction schemes, such as [4, 7] have their performance or cost depend on the

maximum number of bits in an entry that can be erroneous.

We make the following key contributions in this paper.

1. We propose the first software-based method, TCAMChecker, that detects and

corrects soft errors in TCAM entries without requiring changes to TCAM

circuitry.

2. We provide a probabilistic model for analyzing the expected number of times a

TCAM could return erroneous results after a soft error has occurred. This model

shows that TCAMChecker intelligently detects and fixes soft errors more

reliably than prior techniques. We also evaluate the effectiveness of TCAM-

Checker using filter sets and packet traces generated using an open-source tool.

For baseline comparison, we also compare TCAMChecker with a prior scheme

called TCAM scrubbing.

The rest of the paper proceeds as follows. We first discuss related work in Sect. 2

We then present an overview and algorithmic details of TCAMChecker in Sect. 3 In

Sect. 4, we describe different ways to implement TCAMChecker in existing TCAM

architectures and discuss their advantages and disadvantages. In Sect. 5, we evaluate

the performance of our TCAMChecker and compare it with TCAM scrubbing

technique for baseline comparison. Finally, we conclude the paper with Sect. 6

J Netw Syst Manage (2013) 21:335–352 339

123



2 Related Work

To the best of our knowledge, all prior solutions for TCAM error detection and

correction require modifying TCAM circuitry. Therefore, they share the same

fundamental limitation of being expensive and difficult to deploy on existing TCAM

architectures. Modifying TCAM circuitry ‘‘involve millions of dollars of investment

and more than 2 years of development time’’ [10]. The degree by which the

circuitry is modified varies in prior TCAM error detection and correction schemes.

We accordingly classify prior work into two categories: hardware-based

approaches, and hardware-software hybrid approaches.

2.1 Hardware-Based Approaches

Hardware-based approaches focus on maintaining the integrity of an entry’s content in

the presence of soft errors. Noda et al. [9] proposed to build TCAMs with dynamic

RAM (DRAM) cells instead of static RAM (SRAM) cells, which gives TCAM cells

higher resistance to soft errors. Later, Noda et al. [8] proposed to use ECC-DRAM

cells to store a backup of SRAM cells. The contents of the backup cells would be

constantly used to set the values of the SRAM cells to provide the reliability of DRAM

at the speed of SRAM. Both techniques have serious drawbacks. For the first

technique, the DRAM-based TCAMs are much slower than the traditional SRAM-

based TCAMs. For the second technique, the TCAMs with ECC-DRAM backup

require a much larger die area than traditional SRAM cell TCAMs, which will

significantly increase the chip price. The final product cost of a chip in the

semiconductor industry is strongly dependent on the die area of the chip [17].

Azizi and Najm proposed two methods for making the SRAM-based TCAMs

more resistant to soft errors [6]. These two methods use extra transistors in each

TCAM cell to make the ternary state stable so that they are more resistant to soft

errors. Each method offers a distinct trade-off between the extra die area used by the

extra circuitry and the additional reliability of the SRAM cells.

Most recently, Kirishnan et al. [7] developed a theory for ternary Error Correction

Codes (ECCs). Prior to this theory, ECCs can only be applied to Binary Content

Addressable Memories (BCAMs) [18]. They show that ECCs can be adapted to work

in TCAMs, but the cost associated with these ECCs is very high. For example,

tolerating only a single bit error would require a die area increase of 200 %.

2.2 Hardware-Software Hybrid Approaches

One approach is to store additional information with each entry so that each entry

can be individually verified for correctness via a dedicated circuit [19]. This

approach is called scrubbing because each entry is checked individually and

refreshed if it fails a parity check. Scrubbing requires the support of software to

indicate when an entry should be checked by the parity hardware. It is a compromise

between the hardware-based error detection, which masks the occurrence of soft

errors to the software, and software-based error correction, which corrects TCAM

entry without additional TCAM circuitry. This work differs from TCAM scrubbing,
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which is a technique that periodically rewrites TCAM entries during idle cycles,

because the built in parity checks avoid unnecessary rewrites.

Bremler-Bar et al. [4] pioneer the first hardware-software hybrid approach that

outperforms scrubbing. Their technique is called PEDS. They use the unused bits in

a TCAM entry to encode its parity matrix information. During idle cycles, PEDS

periodically checks the integrity of bit columns using the parity matrix information.

It differs from prior scrubbing techniques in that the number of lookups required to

verify the entire TCAM is based upon the entry width rather than the number of

entries; therefore, it uses less idles cycles than scrubbing to detect and correct errors.

However, this technique still requires modifications to the TCAM circuitry.

In contrast to the above-mentioned prior work, our TCAMChecker is a pure

software approach to TCAM error detection and correction. TCAMChecker has the

advantage of being cheap and easy to deploy. Furthermore, TCAMChecker can be

used in conjunction with prior TCAM error detection and correction schemes to

further enhance reliability.

3 TCAMChecker

In this section, we present TCAMChecker, a pure software-based method for

detecting and correcting TCAM errors while performing lookups.

3.1 Overview of TCAMChecker

In TCAMChecker, a ternary lookup table is independently stored in two separate

tables. Given a search key over a ternary table, TCAMChecker first performs two

independent lookups on the two copies of the table and then compares the search

results. If the lookup results mismatch, then at least one error is detected and a

correction is accordingly performed. Using two independent lookups, we achieve

the purpose of error detection and correction without any hardware modification to

TCAM circuitry. Note that in practice, performing a double lookup for every search

key is excessively expensive because the majority of lookups will be correct since

the probability of soft-errors is low. Instead, we probabilistically choose search keys

to go through double lookups. The probabilistic analysis of TCAMChecker is in

Sect. 5 shows that by setting the rate at which we check twice, we can control the

expected number of misclassifications that result from any error. TCAMChecker has

no false positives. For any search key, when the two lookup results do not agree, we

guarantee to detect and correct at least one error. Unfortunately, TCAMChecker

does have false negatives, although the probability of a false negative happening is

extremely low. We discuss the probability of false negatives later in Sect. 5.

3.2 Algorithmic Details of TCAMChecker

We now discuss the theoretical foundations of our proposed TCAMChecker.

TCAMChecker guarantees to detect and correct at least one error for every lookup

mismatch based on Theorem 1. In the rest of this paper, for any ternary table T, an
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index r, and a search key x, we use T[r] to denote its rth entry and T(x) to denote the

index of the first entry that matches x. Given a search key for a TCAM, we assume

that the lookup result is the index of the first entry that the key matches.

Theorem 1 Given a search key x and two TCAM tables T1 and T2 that
independently implement the same error-free ternary table T0, if T1(x) = T2(x), and
denoting min{T1(x), T2(x)} as r, then T0[r] = T1[r] or T0[r] = T2[r].

Proof Without loss of generality, we assume i = T1(x) \ T2(x). For the sake of

contradiction, we suppose T0[r] = T1[r] = T2[r]. Thus, x matches entry T2[r],

which implies that T2(x) B i based on the first-match semantics. This contradicts

with the assumption that r \ T2(x).

Based on Theorem 1, TCAMChecker works as follows. Given a ternary table T0

that we assume to be stored in an error-free memory such as ECC-RAM or

NVRAM, TCAMChecker stores copies of T0 in two TCAM tables T1 and T2. Given

a search key x, TCAMChecker independently searches with x in both tables. If

T1(x) = T2(x), assuming Rmin = min{T1(x), T2(x)}, TCAMChecker rewrites both

entries T1[Rmin] and T2[Rmin] using T0[Rmin], which is guaranteed to correct at least

one TCAM error, and then searches x on both T1 and T2 again. The above process

continues until the two lookup results T1(x) and T2(x) match the ground truth T0(x).

For example in Fig. 1, if (a) is T0, (b) is T1 and (c) is T2, the search key 0010

produces the results T1(0010) = 1 and T2(0010) = 3. TCAMChecker will refresh

T1[1] and T2[1] using T0[1], and repeat the search. This search results in

T1(0010) = 1 and T2(0010) = 3 and causes T1[2] and T2[2] to be refreshed from

T0[2]. Final search will return a consistent result of T1(0010) = 2 and T2(0010) = 2.

So far, we have assumed that for any search key x, both T1 and T2 have matching

entries for x. Next, we address the corner case that T1 or T2 does not have matching

entries for a search key x due to TCAM errors. We assume that the last entry in T0

matches any search key (i.e., every bit in the last entry in T0 is *); otherwise, we cannot

ensure that the last entry matches any search key. Note that we can always replace the

last entry in a TCAM table by an entry of all *s without changing the semantics of the

TCAM table. Thus, given any implementation T of T0 and a search key x, if x does not

match any entry in T, then the last entry of T must contain errors. To cater for this case,

TCAMChecker also checks if T1(x) [ |T| or T2(x) [ |T| along with T1(x) = T2(x).

Again assuming Rmin = min{T1(x), T2(x)}, it first identifies the smaller of Rmin and |T|.

Let Rcorrect denote the smaller of Rmin and |T|. TCAMChecker then rewrites both entries

T1[Rcorrect] and T2[Rcorrect] using T0[Rcorrect], and searches x on both T1 and T2 again.

Now, this process continues till T1(x) = T2(x), T1(x) B |T| and T2(x) B |T|.

Algorithm 1 shows the pseudocode of TCAMChecker algorithm. In Algorithm 1,

we use temporary variables R1 and R2 to hold lookup results for T1(x) and

T2(x) respectively for efficiency reasons. Furthermore, to avoid TCAMChecker

going in an infinite loop in case we have a hard error (e.g. a bit keeps flipping to 0

when the entry should have 1), we limit the maximum number of times

TCAMChecker tries to correct error to MAX_ITERATIONS. If the number of

iterations exceeds MAX_ITERATIONS, then an error flag HW_ERROR_FLAG is

set true and TCAMChecker quits.
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4 Storage Schemes for TCAMChecker

In this section, we describe different ways to store the two lookup tables and discuss

their advantages and disadvantages. There are two schemes to store tables in

TCAMChecker: 2-chip scheme and 1-chip scheme. For either storage scheme, we

store the trustworthy copy in ECC-RAM, which is assumed to be error-free. For

safety critical systems where ECC-RAM cannot be practically assumed to be free of

errors, redundant copies or other error masking techniques can be used to achieve

storage with sufficient reliability.

4.1 2-Chip Scheme

In this scheme, T1 and T2 are stored separately in two TCAM chips and T0 is stored

in RAM (either SRAM or DRAM). Given a search key, we perform one parallel
lookup on each of the two TCAM chips; if the search results mismatch, we use the

table in RAM to rewrite one entry in each table of T1 and T2, correcting at least one

error. Note that most TCAM-based routers are equipped with two TCAM chips [20],

one as a backup chip that allows TCAM tables to be updated without interrupting

searches. For such systems, TCAMChecker offers an additional use for the

secondary chip to provide a higher degree of reliability.
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4.2 1-Chip Scheme

In this scheme, T1 and T2 are stored in one TCAM chip and T0 is stored in RAM

(either SRAM or DRAM). There are two possible methods for efficiently storing

two identical tables: bank discrimination and bit discrimination. We discuss both of

them separately below.

4.2.1 Bank Discrimination

With bank discrimination, we use the row banks within TCAMs to distinguish the

two tables residing in the same chip. Row banks are series of TCAM entries that can

be selectively enabled or disabled during a TCAM search. The primary function of

row banks is power savings because disabled banks are not searched. TCAMs are

most commonly divided into 64 row banks. Bank discrimination distinguishes

between the two tables storing each table in a distinct set of row banks and disabling

the row banks that contain the table that is not being searched. This technique has

the advantage that storing the extra table in the TCAM does not increase the power

required for searching either table.

4.2.2 Bit Discrimination

With bit discrimination, we use one extra bit in the TCAM chip to distinguish the

two tables residing in the same chip. Given two ternary tables T1 and T2, we first

prepend each entry in T1 with 0 and each entry in T2 with 1, and then concatenate

the two resulting tables into one table, denoting T12. Thus, for any search key x,

assuming T1 is stored on top of T2, we have T1(x) = T12(0x) and T2(x) = T12(1x) -

|T1|. Given a search key x, we perform two consecutive lookups on T12 using key

0x and 1x, respectively; if the search results mismatch, we use the table in RAM to

rewrite the two corresponding entries in T12.

In bit discrimination, we can detect the case when discriminator bits get

corrupted. First, for any search key 0x, if T12 has no entry that matches this key, then

the entry T12[|T1| - 1] must contain errors and therefore should be rewritten.

Similarly, for any search key 1x, if T12 has no entry that matches this key, then the

entry T12[|T12| - 1] must contain errors and therefore should be rewritten. Second,

if T12(0x) [ |T1| - 1, which means that 0x does not match entry T12[|T1| - 1]

although it should, then T12[|T1| - 1] must contain errors and therefore should be

rewritten. Third, if T12(1x) B |T1| - 1, which means that 1x matches an entry that it

should not match, then entry T12[T12(1x)] must contain errors and therefore should

be rewritten.

4.2.3 Bank Discrimination Versus Bit Discrimination

Bit discrimination has the advantage that two small tables can be stored in the same

row bank with bit discrimination. We recommend using bank discrimination

whenever both tables cannot be stored in a single bank because using bit

discrimination across multiple bank increases the power consumption for searching
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each table; however, when both tables fit in a single bank, bit discrimination does

not increase power consumption because the number of banks searched is not

increased.

4.3 2-Chip Scheme Versus 1-Chip Scheme

The 2-chip scheme has better performance than 1-chip scheme because it uses

parallel lookups rather than two sequential lookups. The 2-chip scheme has higher

cost than 1-chip scheme because it requires two separate TCAM chips rather than

only one TCAM chip. Therefore, if the TCAM system has two TCAM chips and

each is enough to store the ternary table then we should use the 2-chip storage

scheme; whereas, if the system has only one TCAM chip that is large enough to

store two copies of the table then we should use the 1-chip scheme.

5 Analysis and Comparison of TCAMChecker and TCAM Scrubbing

In this section, we present the analysis and comparison of TCAMChecker and

TCAM scrubbing. Towards this end, we first mathematically model the probability

of false negatives for TCAMChecker and show that it is negligible. We then

estimate the expected number of misclassifications for TCAMChecker caused by

TCAM bit errors during time between their occurrence and their correction. For

baseline comparison, we also estimate the expected number of misclassifications for

TCAM scrubbing. We then compare the actual number of misclassifications of

TCAMChecker and TCAM scrubbing by evaluating them on filter sets and packet

traces generated using an open-source tool called ClassBench [21]. We also provide

insights about selecting appropriate configuration parameters for TCAMChecker

and TCAM scrubbing. Finally, we provide some discussion about the power

analysis of TCAMChecker and TCAM scrubbing.

5.1 Probability of False Negatives for TCAMChecker

Recall that TCAMChecker guarantees to detect an error when the results of parallel

lookups do not match, i.e. T1(x) = T2(x). In addition to the case when

T1(x) = T2(x), in a rare scenario, some errors may occur in T1 and T2 such that

T1(x) = T2(x) but T1(x) or T2(x) do not match T0(x). Such errors are termed as false

negatives of TCAMChecker and can occur when the same ternary bit changes in

both TCAMs. Note that the probability of false negatives is bounded by the rate at

which the TCAMs are periodically refreshed.

We now derive an expression for the probability of false negatives for

TCAMChecker. Since TCAM errors are discrete events, we first model the

probability of error according to the binomial distribution. Let p be the probability

that a given ternary bit changes during a single TCAM cycle and let n be the size of

a TCAM (in bits). Let K be the random variable denoting the number of bit errors

during a single TCAM cycle. We assume that the event of error occurrence in

different bits are independent of each other. Note that this assumption does not rule
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out the possibility of block errors, whose probability can be computed using the

geometric distribution under the above-mentioned assumption. Using binomial

distribution, the probability that k bits out of a total of n become erroneous in a

single TCAM cycle is given by:

PðK ¼ kÞ ¼ n
k

� �
pkð1� pÞk: ð1Þ

Consequently, the expected number of bit errors during a single TCAM cycle is

given as: E[K] = np.

With TCAMChecker the only way to have a false negative is to have the same bit

error happen in both TCAMs in a given cycle. The probability to have the same bit

error happen in both TCAMs in a given cycle, denoted by PFN, is given by 1/n2. For

k bit errors in one cycle, this probability is given as: k/n2. Here we also assume that

the number of bit errors in one cycle is not large in TCAMs, i.e., n� E[K], which is

a reasonable assumption given the fact that modern TCAMs are fairly reliable [22,

23]. Putting the expression for the expected number of single bit errors during a

single TCAM cycle in place of k, the obtain the following final expression:

PFN = p/n. Given that p� 1 and n is a large number, we can deduce that the

probability of a false negative is negligible, i.e. PFN ? 0.

5.2 Expected Number of Misclassifications

Each TCAM error event e has a set of search keys (denoted by Ke � K) that return

erroneous result from the TCAM. We call such erroneous TCAM lookups a

misclassification for the given error e. We now estimate the expected number of

misclassifications for an error during the interval from it occurs until the time in

which it is corrected. This expected number quantifies the damage an error causes

on average. Note that we are not computing the expected number of cycles until an

error is fixed because as long as the error does not cause misclassifications it is

effectively benign. Therefore, directly calculating the number of misclassifications

gives us a better indication of how each technique increases reliability in the system.

5.2.1 TCAMChecker

For any given lookup, it has a PC probability of being checked by TCAMChecker. If

an error can be corrected by TCAMChecker, the expected number of misclassi-

fications for e (from its occurrence) till it is corrected by TCAMChecker is modeled

using geometric distribution as follows:

lim
i!1

Xi

j¼1

j� ð1� PCÞj�1 ¼ 1

PC
; ð2Þ

where i and j represent the count of events when misclassifications occur. Equa-

tion 2 shows that TCAMChecker does not prefer any specific TCAM lookups for

verification. However, it is expected that some keys are more popular than others in

TCAM lookups. Consequently, TCAMChecker checks a popular key with a higher
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probability than a less popular key. Clearly, errors that are associated with more

popular keys have a higher likelihood of causing misclassifications. Therefore, we

can deduce that TCAMChecker automatically allocates it effort towards fixing

errors that are associated with more popular keys, which in turn have a higher

likelihood of causing misclassifications.

5.2.2 TCAM Scrubbing

We now estimate the expected number of misclassifications for an error during the

interval from it occurs through it is corrected by TCAM scrubbing. Recall that

TCAM scrubbing refreshes the TCAM with periodic entry rewrites. Let PS be the

probability that we run TCAM scrubbing in one idle cycle. Note that a single

TCAM entry in the table is replaced every PS cycles by TCAM scrubbing on

average. Usually a counter is used to track the last entry replaced so that the entire

table is replaced over time. Also, let Ke denote the set of keys affected by an error e.

Let popk denote the relative popularity of a key k such that
P
8k2K popk ¼ 1. For a

TCAM with utilization ratio U, on average there are U
1�U search cycles between two

idle cycles. As the total number of entries in a TCAM is n, the expected number of

scrubs needed to correct an error entry is 1
n�

Pn
i¼1 i ¼ nþ1

2
. Combining these terms

together, the expected number of misclassifications before the error is corrected is:

1

PS
� 1

� �
�

X
8k2Ke

popk

 !
� U

1� U
� nþ 1

2
ð3Þ

It is evident from Equation 3 that expected number of misclassifications is

proportional to the popularity of keys affected the error for TCAM scrubbing. This

is because TCAM scrubbing uniformly allocates its effort to all TCAM entries,

irrespective of their popularity. This is in sharp contrast to TCAMChecker, which

naturally verifies popular keys more frequently than less popular ones. We observe

later in our experimental evaluation that TCAMChecker significantly outperforms

TCAM scrubbing because the former intelligently detects and corrects only the

erroneous filters and the latter blindly rewrites filters from the backup source.

5.3 Experimental Evaluation

In this section, we evaluate and compare the accuracy of TCAMChecker and

TCAM scrubbing. Due to privacy related concerns, real-world filter sets and packet

traces are not publicly available. Therefore, we revert to ClassBench, which is an

open-source packet classification performance evaluation tool [21]. ClassBench

generates realistic filter sets and packet traces for benchmarking. For each generated

filter set, we generate a packet trace that is approximately 1,000 times larger than

the size of filter set. An interested reader can find more details in [21]. Using

ClassBench, we generate filter sets of sizes varying in the range of 100–500 filters.

The fields of filter sets include source IP address, destination IP address, source port

and destination port. Note that source and destination ports are in the range format.
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All fields of the filter sets are converted to the prefix format, which increased the

size of resulting filter set.

To perform a realistic experimental evaluation of TCAMChecker and TCAM

scrubbing for TCAM error detection and correction, we simulate two different error

models over a range of error probabilities. A single bit error is simulated by flipping

a random bit in a random filter of the filter set; whereas, a block error is simulated

by flipping multiple co-located bits in a particular filter of the filter set. The goal of

our experimental evaluation is to evaluate and compare the accuracies of

TCAMChecker and TCAM scrubbing for different error models, size of filter sets

and different values of PC and PS. Recall that PC and PS are the probabilities of

applying TCAMChecker or TCAM scrubbing for TCAM lookup verification of a

given packet header, respectively. In our experimental evaluation, Pe denotes the

probability of a bit error in a TCAM for each packet header lookup. Therefore, for a

packet trace containing 100 thousand entries, Pe = 0.01 is equivalent to generating

1000 bit errors. We have reported the average of 100 independent experimental runs

along with error bars showing the 95 % confidence intervals for each data point

reported in the following figures.

We first investigate the effect of varying the error probability of single bit errors

on the number of misclassification for TCAMChecker and TCAM scrubbing while

varying values of PC and PS. For this investigation, we use a filter set containing 136

filters and a packet trace containing 136 thousand packet headers. Figure 3 shows

the plot of the number of misclassifications for TCAM scrubbing and TCAM-

Checker. As expected, we observe that the number of misclassifications increase for

both TCAM scrubbing and TCAMChecker as Pe increases. Furthermore, the

number of misclassifications decrease as we increase the values of PS and PC

parameters.

Before comparing TCAMChecker and TCAM scrubbing, we reiterate that

TCAMChecker uses selected lookup verification, i.e. with probability PC two

lookups are carried out for a given packet header and TCAMChecker is enabled

only if the lookup results disagree. On the other hand, TCAM scrubbing

incrementally refreshes an entry in TCAM from the backup table stored in ECC-

RAM or NVRAM with probability PS for a given packet header. The results of our

experiments clearly show that TCAMChecker has lesser average number of

misclassifications than TCAM scrubbing for all values of Pe and PC or PS. For

example, TCAMChecker results in only 4 misclassifications for a packet trace

containing 136 thousand packets when only one in ten packet headers are double-

checked for lookup verification. TCAM scrubbing misclassifies more than 80

packets out of 136 thousand packets when after every ten packets a rule is refreshed

from the backup table.

We now investigate the effect of varying the error probability of block errors Pe

on the number of misclassifications for TCAMChecker and TCAM scrubbing while

varying values of PC and PS. Figure 4 shows the plot of the number of

misclassifications for TCAM scrubbing and TCAMChecker in this scenario. We

observe trends similar to those observed in Fig. 3; however, the increase in the

number of misclassifications for increasing values of Pe decreases significantly.
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We now study the effect of varying the values of PC and PS parameters on the

number of misclassifications for TCAMChecker and TCAM scrubbing while

varying the sizes of filter sets. Figure 3 shows the plot of the number of

misclassifications for TCAM scrubbing and TCAMChecker for single bit errors and

block errors. Note that a fixed error probability is used for this evaluation. For both

single bit errors and block errors, we observe that the number of misclassifications

decrease exponentially as we increase the values of PC and PS parameters. This is

expected because TCAMChecker performs lookup verification more often for

higher values of PC and TCAM scrubbing refreshes the TCAM entries from the

backup table more often for higher values of PS (Fig. 5).

The results of our experiments have clearly showed that TCAMChecker outperforms

TCAM scrubbing in terms of accuracy. The improved performance of TCAMChecker is

attributed to the fact that it intelligently detects and corrects only erroneous TCAM

entries by comparing the results of two TCAMs operating in parallel. The underlying

principle of TCAMChecker is based on Theorem 1, which states that at least one error is

detected (and corrected) if the results of two TCAMs mismatch. TCAM scrubbing, on

the other hand, blindly refreshes entries from the backup table.

5.4 Selecting Appropriate PC or PS Values

We now provide insights to choose an appropriate values of PC and PS based on our

findings from experimental evaluations. The effectiveness of both TCAMChecker

and TCAM scrubbing have a strong dependence on the error probability and the size

of filter sets. Therefore, the appropriate value of PC and PS is also dependent on the

above-mentioned factors. To reduce the number of misclassifications, values of PC

and PS should be chosen proportional to the estimated error probability values. The

size of filter sets is also proportional to the number of misclassifications; therefore,

higher values of PC and PS should be chosen for larger filter sets. Given the fact that

modern TCAMs are fairly reliable, it is reasonable to assume that error probabilities

in real-world TCAMs are significantly low with Pe \ 0.1 in most cases [22, 23].

However, we do not have any control over the size of filter sets, which can typically
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Fig. 3 Comparison of TCAM scrubbing and TCAMChecker for single bit errors while varying values of
PS, PC and Pe. The results are reported for a filter set with 136 rules and the accompanying network trace
containing approximately 136 thousand packet headers
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contain several hundred filters. Therefore, a moderate value of PC or PS & 0.5

should be chosen to keep the number of misclassifications in check.

6 Conclusions

This paper represents the first step towards software-based TCAM error detection

and correction. Our proposed technique, TCAMChecker, has three major
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Fig. 4 Comparison of TCAM scrubbing and TCAMChecker for block errors while varying values of
PS, PC and Pe. The results are reported for a filter set with 136 rules and the accompanying network trace
containing approximately 136 thousand packet headers
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Fig. 5 Accuracy comparison of TCAM scrubbing and TCAMChecker for varying sizes of filter sets.
Confidence intervals are too small to be shown in the plots
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advantages over prior schemes. First, TCAMChecker requires no hardware

modification, which makes it cheap and practical to be implemented in existing

and future systems. Second, TCAMChecker provides mechanisms for system

designers to flexibly balance between performance and reliability. Third, TCAM-

Checker is not constrained by the number of bit errors within a single TCAM entry.
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