Skip to main content

Advertisement

Log in

Energy Efficient Sleep Schedule with Service Coverage Guarantee in Wireless Sensor Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Service oriented architecture has been proposed to support collaborations among distributed wireless sensor network (WSN) applications in an open dynamic environment. However, WSNs are resource constraint, and have limited computation abilities, limited communication bandwidth and especially limited energy. Fortunately, sensor nodes in WSNs are usually deployed redundantly, which brings the opportunity to adopt a sleep schedule for balanced energy consumption to extend the network lifetime. Due to miniaturization and energy efficiency, one sensor node can integrate several sense units and support a variety of services. Traditional sleep schedule considers only the constraints from the sensor nodes, can be categorized to a one-layer (i.e., node layer) issue. The service oriented WSNs should resolve the energy optimization issue considering the two-layer constraints, i.e., the sensor nodes layer and service layer. Then, the one-layer energy optimization scheme in previous work is not applicable for service oriented WSNs. Hence, in this paper we propose a sleep schedule with a service coverage guarantee in WSNs. Firstly, by considering the redundancy degree on both the service level and the node level, we can get an accurate redundancy degree of one sensor node. Then, we can adopt fuzzy logic to integrate the redundancy degree, reliability and energy to get a sleep factor. Based on the sleep factor, we furthermore propose the sleep mechanism. The case study and simulation evaluations illustrate the capability of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  2. Sohraby, K., Minoli, D., Znati, T.: Wireless Sensor Networks: Technology, Protocols, and Applications. Wiley, New York (2007)

    Book  Google Scholar 

  3. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR, Englewood Cliffs (2005)

    Google Scholar 

  4. Leguay, J., Lopez-Ramos, M., Jean-Marie, K., Conan, V.: An efficient service oriented architecture for heterogeneous and dynamic wireless sensor networks. In: Proceedings of the 33rd IEEE Conference on Local Computer Networks, pp. 740–747. IEEE Press (2008)

  5. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building context-aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)

    Article  Google Scholar 

  6. Delicato, F.C., Pires, P.F., Pinnez, L., Fernando, L., da Costa, LFR: A flexible web service based architecture for wireless sensor networks. In: Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops, pp. 730–735. IEEE Press (2003)

  7. Tong, E.D., Niu, W.J., Li, G., Tang, D., Chang, L., Shi, Z.Z., Ci, S.: Bloom filter-based workflow management enables qos guarantee in wireless sensor networks. J. Netw. Comput. Appl. 39, 38–51 (2014)

    Article  Google Scholar 

  8. Li, Q., Niu, W., Li, G., Tong, E., Hu, Y., Liu, P., Guo, L.: Recover fault services via complex service-to-node mappings in wireless sensor networks. J. Netw. Syst. Manag. 23(3), 474–501 (2015)

    Article  Google Scholar 

  9. Romer, K., Mattern, F.: The design space of wireless sensor networks. Wirel. Commun. IEEE 11(6), 54–61 (2004)

    Article  Google Scholar 

  10. Waltenegus, D.: Dynamic power management in wireless sensor networks: state-of-the-art. IEEE Sens. J. 12(5), 1518–1528 (2012)

    Article  Google Scholar 

  11. Haibo, Z., Hong, S.: Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Trans. Parallel Distrib. Syst. 20(10), 1526–1539 (2009)

    Article  Google Scholar 

  12. Krishnamachari, B., Estrin, D., Wicker, S.: The impact of data aggregation in wireless sensor networks. In: Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on, pp. 575–578. IEEE, 2002

  13. Anastasi, G., Conti, M., Di Francesco, M.: Extending the lifetime of wireless sensor networks through adaptive sleep. Ind. Inf. IEEE Trans. 5(3), 351–365 (2009)

    Article  Google Scholar 

  14. Anastasi, G., Conti, M., Di Francesco, M.: Extending the lifetime of wireless sensor networks through adaptive sleep. IEEE Trans. Ind. Inf. 5(3), 351–365 (2009)

    Article  Google Scholar 

  15. Tian, D., Georganas, N.D.: A coverage-preserving node scheduling scheme for large wireless sensor networks. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 32–41. ACM, 2002

  16. AbdelSalam, H.S., Olariu, S., Zhang, D.Q.: Toward adaptive sleep schedules for balancing energy consumption in wireless sensor networks. IEEE Trans. Comput. 61(10), 1443–1458 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kim, J., Lin, X.J., Shroff, N.B., Sinha, P.: On maximizing the lifetime of delay-sensitive wireless sensor networks with anycast. In: Proceedings of the 27th IEEE International Conference on Computer Communications, pp. 807–815. IEEE Press (2008)

  18. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw. 7(3), 537–568 (2009)

    Article  Google Scholar 

  19. Cardei, M., MacCallum, D., Cheng, M.X., Min, M., Jia, X., Li, D., Du, D.-Z.: Wireless sensor networks with energy efficient organization. J. Interconnect. Netw. 3(03n04), 213–229 (2002)

    Article  Google Scholar 

  20. Slijepcevic, S., Potkonjak, M.: Power efficient organization of wireless sensor networks. In: Communications, 2001. ICC 2001. IEEE International Conference on, vol. 2, pp. 472–476. IEEE (2001)

  21. Xu, Y., Heidemann, J., Estrin, D.: Adaptive energy-conserving routing for multihop ad hoc networks. In: RESEARCH REPORT 527, USC/INFORMATION SCIENCES INSTITUTE. Citeseer, 2000

  22. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless sensor networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1567–1576. IEEE (2002)

  23. Lin, P., Qiao, C., Wang, X.: Medium access control with a dynamic duty cycle for sensor networks. In: Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE, vol. 3, pp. 1534–1539. IEEE (2004)

  24. Pearlman, M.R., Deng, J., Liang, B., Haas, Z.J.: Elective participation in ad hoc networks based on energy consumption. In: Global Telecommunications Conference, 2002. GLOBECOM’02. IEEE, vol. 1, pp. 26–31. IEEE (2002)

  25. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wirel. Netw. 8(5), 481–494 (2002)

    Article  MATH  Google Scholar 

  26. Deng, J., Han, Y.S., Heinzelman, W.B., Varshney, P.K.: Scheduling sleeping nodes in high density cluster-based sensor networks. Mobile Netw. Appl. 10(6), 825–835 (2005)

    Article  Google Scholar 

  27. Deng, J., Han, Y.S., Heinzelman, W.B., Varshney, P.K.: Balanced-energy sleep scheduling scheme for high-density cluster-based sensor networks. Comput. Commun. 28(14), 1631–1642 (2005)

    Article  Google Scholar 

  28. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  29. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

    Article  Google Scholar 

  30. Abdi, H.: Coefficient of variation. In Salkind, N. J. (ed.) Encyclopedia of Research Design, pp. 169–171. SAGE Publications Inc, Thousand Oaks (2010)

    Google Scholar 

  31. Novák, V.: Reasoning about mathematical fuzzy logic and its future. Fuzzy Sets Syst 192, 25–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, New York (2009)

    Google Scholar 

  33. Lee, C.-C.: Fuzzy logic in control systems: fuzzy logic controller. II. Syst. Man Cybern. IEEE Trans. 20(2), 419–435 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cerpa, A., Estrin, D.: Ascent: adaptive self-configuring sensor networks topologies. Mobile Comput. IEEE Trans. 3(3), 272–285 (2004)

    Article  Google Scholar 

  35. Ye, F., Zhong, G., Cheng, J., Lu, S., Zhang, L.: Peas: a robust energy conserving protocol for long-lived sensor networks. In: Distributed Computing Systems, 2003. Proceedings. 23rd International Conference on, pp. 28–37. IEEE (2003)

Download references

Acknowledgments

This research is supported by the Fundamental Research Funds for the Central Universities (2013XK10), National Natural Science Foundation of China (No. 61103158), Major Directionality Project of Chinese Academy of Sciences (KGZD-EW-102-1), Guangxi Key Laboratory of Trusted Software (KX201418), the Securing CyberSpace Research Lab of Deakin University, Beijing Key Lab of Intelligent Telecommunication Software andMultimedia (ITSM201502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Hao.

Additional information

Neither the entire paper nor any part of its content has been published or has been accepted for publication elsewhere. It has not been submitted to any other journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Tong, E., Hao, J. et al. Energy Efficient Sleep Schedule with Service Coverage Guarantee in Wireless Sensor Networks. J Netw Syst Manage 24, 834–858 (2016). https://doi.org/10.1007/s10922-015-9361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-015-9361-9

Keywords

Navigation