Skip to main content
Log in

The Impact of 16-bit and 32-bit ASNs Coexistence on the Accuracy of Internet AS Graph

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Modeling Internet structure as an autonomous system (AS) graph has attracted researchers over years. AS graph model demonstrates the power-law distribution of the Internet. It also demonstrates the relationship between the cluster coefficient and the small-world structure of the Internet. To obtain an accurate AS graph model, the data used to generate the graph should be massive and correct. In this work, we studied the correctness of the data that is utilized to generate Internet AS graph. We conducted an experiment to measure the popularity of 32-bit AS numbers (ASNs) in the Internet. We examined the impact of the special purpose 16-bit reserved ASN AS23456 on the accuracy of the AS graph. To this end, we proposed a cleaning algorithm to correct the conflict that AS23456 produces. Our results show that the current existing method of mapping 16-bit and 32-bit ASNs reduces the fidelity of the constructed AS graph to various graph parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choffnes, D.R., Bustamante, F.E.: Taming the torrent: a practical approach to reducing cross-ISP traffic in peer-to-peer systems. In: ACM SIGCOMM (2008)

  2. Ren, S., Luo, T., Chen, S., Guo, L., Zhang, X., Tan, E.: opBT: a topology-aware and infrastructure-independent bittorrent client. In: IEEE INFOCOM (2010)

  3. Chang, H., Wang, W., Jamin, S.: Live streaming performance of the Zattoo network. In: IMC (2009)

  4. Masoud, M.Z., Cheng, W., Hei, X.: A measurement study of AS paths: methods and tools. In: 18th APCC, IEEE (2012)

  5. Zhang, Y., Wang, Y., Su, S., Zhang, B., Bi, J., Zhang, H., Zhang, L., Oliveira, R.: A framework to quantify the pitfalls of using traceroute in AS-level topology measurement. IEEE J. Sel. Areas Commun. 29(9), 1822–1836 (2011)

    Article  Google Scholar 

  6. Rekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (BGP-4). No. RFC 4271. (2006)

  7. Vohra, Q., Chen, E.: BGP support for four-octet AS number space. No. RFC 4893. (2007)

  8. Aiello, W., Lu, L., Chung, F.: A random graph model for massive graphs. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (2000)

  9. Faloutsos, M., Faloutsos, C., Faloutsos, P.: On power-law relationships of the internet topology. SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999)

    Article  MATH  Google Scholar 

  10. Gill, P., Goldberg, S., Schapira, M.: Modeling on quicksand: dealing with the scarcity of ground truth in interdomain routing data. SIGCOMM Comput. Commun. Rev. 42(1), 40–46 (2012)

    Article  Google Scholar 

  11. Trajković, L.: Analysis of internet topologies. Circuits Syst. Mag. 13(3), 48–54 (2010)

    Article  Google Scholar 

  12. Bu, T., Don, T.: On distinguishing between internet power law topology generators. In: IEEE INFOCOM (2002)

  13. Masoud, M., Cheng, W., Hei, X.: A graph-theoretic study of the flattening internet AS topology. In: IEEE ICON (2013)

  14. Mahadevan, P., Fomenkov, M., Dimitropoulos, X., Vahdat, A., Krioukov, D.: The internet AS-level topology: three data sources and one definitive metric. SIGCOMM 36(1), 17–26 (2006)

    Article  Google Scholar 

  15. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dhamdhere, A., Dovrolis, C., Cherukuru, K., Cherukuru, H.: Measuring the evolution of internet peering agreements. In: 11th IFIP (2012)

  17. Chang, H., Jamin, S.: To peer or not to peer: modeling the evolution of the internets AS-level topology. In: IEEE INFOCOM (2006)

  18. Serrano, M.A., Guilera, A.D., Boguna, M.: Modeling the internet. Eur. Phys. J. B 50(1–2), 249–254 (2006)

    Article  Google Scholar 

  19. Holme, P., Forrest, S., Karlin, J.: An integrated model of traffic, geography and economy in the internet. SIGCOMM Comput. Commun. Rev. 38(3), 5–16 (2008)

    Article  Google Scholar 

  20. Park, S.-T., Giles, C.L., Pennock, D.M.: Comparing static and dynamic measurements and models of the internets AS topology. In: IEEE INFOCOM (2004)

  21. Wang, X., Loguinov, D.: Wealth-based evolution model for the internet AS-level topology. In: IEEE INFOCOM (2006)

  22. Zhou, S.: Understanding the evolution dynamics of internet topology. Phys. Rev. E 74(1), 016124 (2006)

    Article  Google Scholar 

  23. Gao, L., Wang, F.: The extent of AS path inflation by routing policies. In: IEEE GLOBECOM (2002)

  24. Cohen, R.: The internet dark matter: on the missing links in the AS connectivity map. In: Proceedings of IEEE INFOCOM (2006)

  25. Chang, H., Jamin, S., Shenker, S.J., Willinger, W., Govindan, R.: Towards capturing representative AS-level internet topologies. Comput. Netw. 44(6), 737–755 (2004)

    Article  Google Scholar 

  26. He, Y., Faloutsos, M., Krishnamurthy, S., Siganos, G.: Lord of the links: a framework for discovering missing links in the internet topology. IEEE/ACM Trans. Netw. 17(2), 391–404 (2009)

    Article  Google Scholar 

  27. Ager, B., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W., Chatzis, N.: Anatomy of a large European IXP. In: SIGCOMM (2012)

  28. Bollobás, B.: Modern graph theory, vol. 184. Springer, New York (1998)

    MATH  Google Scholar 

  29. Routeviews. http://www.routeviews.org (2014)

  30. Luckie, M., Claffy, K., Dhamdhere, A., Giotsas, V., Huffaker, B.: AS relationships, customer cones, and validation. In: Internet Measurement Conference (IMC) (2013)

  31. Hyun, Y., Broido, A.: Traceroute and BGP AS path incongruities. CAIDA, Technical Report (2003)

  32. Ripe. http://www.ripe.net/ (2014)

  33. BGP dumps. http://traceroute.org/ (2014)

  34. Jin, S., Bestavros, A.: Small-world characteristics of internet topologies and implications on multicast scaling. Comput. Netw. 50(5), 648–666 (2006)

    Article  MATH  Google Scholar 

  35. CIDER: Cider-report. http://www.cidr-report.org/as2.0/autnums.html (2014)

  36. Wayback machine project. https://archive.org/web/ (2014)

  37. Cardona Restrepo, J.C., Stanojevic, R.: A history of an internet exchange point. SIGCOMM Comput. Commun. Rev. 42(2), 58–64 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoud, M., Jaradat, Y., Jannoud, I. et al. The Impact of 16-bit and 32-bit ASNs Coexistence on the Accuracy of Internet AS Graph. J Netw Syst Manage 25, 253–268 (2017). https://doi.org/10.1007/s10922-016-9389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-016-9389-5

Keywords

Navigation