Skip to main content
Log in

A Lightweight Fairness-Driven AQM for Regulating Bandwidth Utilization in Best-Effort Routers

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The end-to-end congestion control mechanism of transmission control protocol (TCP) is critical to the robustness and fairness of the best-effort Internet. Since it is no longer practical to rely on end-systems to cooperatively deploy congestion control mechanisms, the network itself must now participate in regulating its own resource utilization. To that end, fairness-driven active queue management (AQM) is promising in sharing the scarce bandwidth among competing flows in a fair manner. However, most of the existing fairness-driven AQM schemes cannot provide efficient and fair bandwidth allocation while being scalable. This paper presents a novel fairness-driven AQM scheme, called CHORD (CHOKe with recent drop history) that seeks to maximize fair bandwidth sharing among aggregate flows while retaining the scalability in terms of the minimum possible state space and per-packet processing costs. Fairness is enforced by identifying and restricting high-bandwidth unresponsive flows at the time of congestion with a lightweight control function. The identification mechanism consists of a fixed-size cache to capture the history of recent drops with a state space equal to the size of the cache. The restriction mechanism is stateless with two matching trial phases and an adaptive drawing factor to take a strong punitive measure against the identified high-bandwidth unresponsive flows in proportion to the average buffer occupancy. Comprehensive performance evaluation indicates that among other well-known AQM schemes of comparable complexities, CHORD provides enhanced TCP goodput and intra-protocol fairness and is well-suited for fair bandwidth allocation to aggregate traffic across a wide range of packet and buffer sizes at a bottleneck router.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. UDP-based applications can also realize congestion control either through their own application layer mechanism, or by using an alternative transport layer protocol, such as DCCP [9], which is similar to UDP but provides a light-weight congestion control mechanism.

  2. The ns-2 implementation of CHORD is available at https://github.com/fairness-driven-AQM/CHORD.

References

  1. Adams, R.: Active queue management: a survey. IEEE Commun. Surv. Tutor. 15(3), 1425–1476 (2013)

    Article  Google Scholar 

  2. Kushwaha, V., Gupta, R.: Congestion control for high-speed wired network: a systematic literature review. J. Netw. Comput. Appl. 45, 62–78 (2014)

    Article  Google Scholar 

  3. Baker, F., Fairhurst, G.: IETF recommendations regarding active queue management. IETF RFC 7567, BCP 197. https://www.rfc-editor.org/rfc/rfc7567.txt (2015). Accessed 21 Aug 2017

  4. Floyd, S.: Congestion control principles. IETF RFC 2914, BCP 41. https://tools.ietf.org/html/rfc2914.html (2000). Accessed 21 Aug 2017

  5. Papadimitriou, D. Welzl, M., Scharf, M., Briscoe B.: Open research issues in Internet congestion control. IETF RFC 6077. https://www.rfc-editor.org/rfc/rfc6077.txt (2011). Accessed 21 Aug 2017

  6. Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J., Zhang, L.: Recommendations on queue management and congestion avoidance in the Internet. IETF RFC 2309. https://www.rfc-editor.org/rfc/rfc2309.txt (1998). Accessed 21 Aug 2017

  7. Abbas, G., Halim, Z., Abbas, Z.H.: Fairness-driven queue management: a survey and taxonomy. IEEE Commun. Surv. Tutor. 18(1), 324–367 (2016)

    Article  Google Scholar 

  8. Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Trans. Netw. 7(4), 458–472 (1999)

    Article  Google Scholar 

  9. Kohler, E., Handley, M., Floyd S.: Datagram congestion control protocol (DCCP). IETF RFC 4340. https://www.rfc-editor.org/rfc/rfc4340.txt (2006). Accessed 21 Aug 2017

  10. Anjum, F. M., Tassiulas, L.: Fair bandwidth sharing among adaptive and non-adaptive flows in the Internet. In: Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, 21–25 March, New York, USA, pp. 1412–1420 (1999)

  11. Nossenson, R., Maryuma, H.: Active queue management in blind access networks. In: Third International Conference on Access Networks, 24–29 June, Venice, Italy, pp. 27–30 (2012)

  12. Latré, S., Meerssche, W., Deschrijver, D., Papadimitriou, D., Dhaene, T., Turck, F.: A cognitive accountability mechanism for penalizing misbehaving ECN-based TCP stacks. Int. J. Netw. Manag. 23(1), 16–40 (2013)

    Article  Google Scholar 

  13. Hwang, J., Byun, S.-S.: A resilient buffer allocation scheme in active queue management: a stochastic cooperative game theoretic approach. Int. J. Commun Syst. 28(6), 1080–1099 (2015)

    Article  Google Scholar 

  14. Yi, S., Deng, X., Kesidis, G., Das, C.R.: A dynamic quarantine scheme for controlling unresponsive TCP sessions. Telecommun. Syst. 37, 169–189 (2008)

    Article  Google Scholar 

  15. Hanlin, S., Yuehui, J., Yidong, C., Hongbo, W., Shiduan C.: Improving fairness of RED aided by lightweight flow information. In: 2nd IEEE International Conference on Broadband Network & Multimedia Technology, 18–20 October, Beijing, China, pp. 335–339 (2009)

  16. Abbas, G., Nagar, A. K., Tawfik, H., Goulermas J. Y.: Pricing and unresponsive flows purging for global rate enhancement. J. Electr. Comput. Eng. Article ID 379652, 1–10 (2010)

  17. Alvarez-Flores, E.P., Ramos-Munoz, J.J., Ameigeiras, P., Lopez-Soler, J.M.: Selective packet dropping for VoIP and TCP flows. Telecommun. Syst. 46(1), 1–16 (2011)

    Article  Google Scholar 

  18. Xue, L., Kumar, S., Cui, C., Kondikoppa, P., Chiu, C.-H., Park, S.-J.: Towards fair and low latency next generation high speed networks: AFCD queuing. J. Netw. Comput. Appl. 70, 183–193 (2016)

    Article  Google Scholar 

  19. Tsavlidis, L., Efraimidis, P.S., Koutsiamanis, R.-A.: Prince: an effective router mechanism for networks with selfish flows. J. Internet Eng. 6(1), 355–362 (2016)

    Google Scholar 

  20. Menth, M., Zeitler, N.: Activity-based congestion management for fair bandwidth sharing in trusted packet networks. In: 2016 IEEE/IFIP Network Operations and Management Symposium, 25–26 April, Istanbul, Turkey, pp. 231–239 (2016)

  21. Pan, R., Prabhakar, B., Psounis, K.: CHOKe—a stateless active queue management scheme for approximating fair bandwidth allocation. In: Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, 26–30 March, Tel Aviv, Israel, pp. 942–951 (2000)

  22. Jiang, Y., Hamdi, M., Liu, J.: Self adjustable CHOKe: an active queue management algorithm for congestion control and fair bandwidth allocation. In: Eight IEEE International Symposium on Computers and Communication, 30 June–3 July, Kemer–Antalya, Turkey, pp. 1018–1025 (2003)

  23. Yamaguchi, Y., Takahashi, Y.: A queue management algorithm for fair bandwidth allocation. Comput. Commun. 30(9), 2048–2059 (2007)

    Article  Google Scholar 

  24. Kesselman, A., Leonardi, S.: Game-theoretic analysis of Internet switching with selfish users. Theor. Comput. Sci. 452, 107–116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, L., Du, H., Liu, R.P.: CHOKeR: a novel AQM algorithm with proportional bandwidth allocation and TCP protection. IEEE Trans. Ind. Inform. 10(1), 637–644 (2014)

    Article  Google Scholar 

  26. Manzoor, S., Abbas, G., Hussain, M.: CHOKeD: fair active queue management. In: 15th IEEE International Conference on Computer and Information Technology, 26–28 October, Liverpool, UK, pp. 512–516 (2015)

  27. Raza, U., Abbas, G., Hussain, Z.: CHOKe-FS: CHOKe with fair bandwidth share. In: 2015 International Conference on Information and Communication Technologies, 12–13 December, Karachi, Pakistan, pp. 1–5 (2015)

  28. Hussain, Z., Abbas, G., Raza, U.: CHOKe with recent drop history. In: Proceedings of 13th IEEE International Conference on Frontiers of Information Technology, 14–16 December, Islamabad, Pakistan, pp. 160–165 (2015)

  29. Jiang, X., Jin, G., Yang, J.: LRURC: A low complexity and approximate fair active queue management algorithm for choking non-adaptive flows. IEEE Commun. Lett. 19(4), 545–548 (2015)

    Article  Google Scholar 

  30. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)

    Article  Google Scholar 

  31. Abbas, G., Nagar, A.K., Tawfik, H.: On unified quality of service resource allocation scheme with fair and scalable traffic management for multiclass Internet services. IET Commun. 5(16), 2371–2385 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Feknous, M., Houdoin, T., Le Guyader, B., De Biasio, J., Gravey, A., Gijón, J.A.T.: Internet traffic analysis: a case study from two major European operators. In: 2014 IEEE Symposium on Computers and Communications, 23–26 June, Portugal, pp. 1–7 (2014)

  33. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, Hoboken (1991)

    MATH  Google Scholar 

  34. Andrew, L., Marcondes, C., Floyd, S., Dunn, L., Guillier, R., Gang, W., Eggert, L., Ha, S., Rhee, I.: Towards a common TCP evaluation suite. In: Sixth International Workshop on Protocols for FAST Long-Distance Networks, 5–7 March, Manchester, UK, pp. 1–5 (2008)

  35. Gastwirth, J.L.: The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat. 54(3), 306–316 (1972)

    Article  MathSciNet  Google Scholar 

  36. Villamizar, C., Song, C.: High performance TCP in ANSNET. ACM SIGCOMM Comput. Commun. Rev. 24(5), 45–60 (1994)

    Article  Google Scholar 

  37. Vishwanath, A., Sivaraman, V., Rouskas G. N.: Considerations for sizing buffers in optical packet switched networks. In: 28th IEEE Conference on Computer Communications, 19–25 April, Rio de Janeiro, Brazil, pp. 1323–1331 (2009)

  38. Beheshti, N., Burmeister, E., Ganjali, Y., Bowers, J.E., Blumenthal, D.J., McKeown, N.: Optical packet buffers for backbone Internet routers. IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010)

    Article  Google Scholar 

  39. Gharakheili, H.H., Vishwanath, A., Sivaraman, V.: Comparing edge and host traffic pacing in small buffer networks. Comput. Netw. 77, 103–116 (2015)

    Article  Google Scholar 

  40. Gettys, J.: Bufferbloat: dark buffers in the Internet. IEEE Internet Comput. 15(3), 95–96 (2011). doi:10.1109/MIC.2011.56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zawar Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Abbas, G. & Halim, Z. A Lightweight Fairness-Driven AQM for Regulating Bandwidth Utilization in Best-Effort Routers. J Netw Syst Manage 26, 486–517 (2018). https://doi.org/10.1007/s10922-017-9427-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-017-9427-y

Keywords

Navigation