

Collaborative Service Discovery in Mobile
Social Networks

Michele Girolami (Corresponding author)
Istituto di Scienza e Tecnologie dell’Informazione – Consiglio Nazionale delle Ricerche, Via G.
Moruzzi 1, 56124 Italy, Pisa, Tel. +39 050 3152040, michele.girolami@isti.cnr.it

Dimitri Belli
Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Italy, Pisa,
Tel. +39 050 2223179, dimitri.belli@di.unipi.it

Stefano Chessa
Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Italy, Pisa,
Tel. +39 050 2213122, stefano.chessa@di.unipi.it
Istituto di Scienza e Tecnologie dell’Informazione – Consiglio Nazionale delle Ricerche, Via G.
Moruzzi 1, 56124 Italy, Pisa

Collaborative Service Discovery in Mobile Social Networks
Michele Girolamia, Dimitri Bellib, Stefano Chessaa,b

a ISTI-CNR, Via G. Moruzzi 1, 56124 Italy, Pisa, michele.girolami@isti.cnr.it

b Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Italy, Pisa,
ste@di.unipi.it, dimitri.belli@di.unipi.it

Abstract:

Mobile social networking is a recent paradigm arisen from the wide spread of mobile and wearable
devices. Based on the short-range communication interfaces of these devices it is possible to establish
opportunistic communications among them and build networks independent to the global one.
Challenges introduced by this new type of networks are related to the sharing of resources and
services and to the exploitation of the communication opportunities among devices. Limit of existing
algorithms, that have sought to fill these shortages, is the lack of attention on the main actor of this
service-oriented chain, the user. To this purpose, we introduce the COllaborative seRvice DIscovery
ALgorithm (CORDIAL) that leverages both mobility and sociality of the users. We evaluate the
performance of CORDIAL combined with different routing protocols for opportunistic networks, and
we compare it with a benchmark algorithm (S-Flood) based on flooding and another service discovery
algorithm designed to leverage mobile social network features, namely, ServIce DiscovEry in Mobile
sociAl Networks (SIDEMAN). Our results show that the performance of CORDIAL remains stable
with the different routing algorithms and that, in function of the query forwarding strategy triggered,
CORDIAL matches the performance of S-Flood in terms of Query Response Time, achieving a better
proactivity score with respect S-Flood and SIDEMAN as well.

Keywords: Social Mobility, Ad-Hoc Networking, Service-oriented Architectures, Delay-tolerant
Communications, Opportunistic Routing, Mobility Datasets, Community Detection.

1. Introduction
Mobile social networks (MSN) [1] are a novel paradigm of networks that exploits point-to-point
communications among users’ devices (usually smartphones or smartwatches) to establish social
networks of users that are dependent on mobility and location of the users themselves. Differently than
on-line social networks (such as Facebook or Twitter), MSN do not rely on virtual relationships among
users, rather they rely on physical relationships. For example, two users may be linked in a MSN
because they often meet (because they frequent the same places or use the same bus, etc.) or because
they often talk to each other and/or do the same activities together [2,3,4,5]. Under this respect, MSN
aim to build cyber-physical social networks in which people are connected both in the virtual and in
the physical worlds.

MSN are enabled by the unbridled diffusion and progress of smartphones technologies in the last years.
In particular, spurred by technological advances in terms of memory, processing, sensing, and short-
range communication capabilities, such devices are now able to interact among themselves and with
the physical world without the intermediation of remote cloud services.

In this work, we thus consider a scenario in which people carry their smart devices (from the
networking point of view we will refer these devices as nodes) and establish meaningful social
relationships with other people. Nodes form a point-to-point network (exploiting their short-range

communication infrastructure) are part of a service-oriented architecture [1] to share services and
information. On the other hand, mobility of people affects the communication opportunities among
nodes. Indeed, mobility is important in our scenario: it is not strictly functional to networking because
people move according to their own specific objectives, but it follows patterns that reflect the social
relationships among people. In turn, this gives the underlying network the opportunity to share
information and services according to such social relationship patterns. In particular, three main key
aspects characterize human mobility: common activities (e.g., going work in the morning and back
home in the evening), visiting a limited number of locations (e.g., home, work office, gym etc.), and
traveling more frequently along short paths instead of long routes. Furthermore, concerning sociality,
longer encounters (and also co-activity) among people usually reflect some common interests
[2,3,4,5,6]. Observing the patterns of movements and encounters, it is then possible to identify
communities of people, for example people that work in the same office or students attending the same
classes, who share interests for similar topics and that tend to meet regularly and periodically. A MSN
in this context would provide to such communities the capability of sharing the (hardware and software)
device’s resources of their devices in a service-oriented approach. This problem is commonly known
as service discovery [7], whose primary goal is to efficiently provide the nodes with the services they
need, without relying on any specific infrastructure. Specifically, service discovery builds upon the
two main phases of service advertisement and service query which make possible to conciliate together
the search for a service with its offer. However, in the context of opportunistic communications given
by MSN, where message latencies are usually high and where it is important to keep the overhead low,
conventional message diffusion approaches for advertisements and queries fail to optimize both these
aspects for two reasons: social aspects of the users are often treated as marginal characteristics, and
advertisements and queries require different diffusion strategies. Our approach focuses on
communication opportunities among devices through the study of the social aspects of the users,
leveraging their ties to detect communities in accordance with the dissemination of advertisements and
queries. On the basis of their respective competences, each entity operates according to a specific
information dissemination strategy: proactive for advertisements and reactive for queries. Specifically,
we propose CORDIAL (COllaborative seRvice DIscovery ALgorithm), a novel algorithm for service
dissemination and discovery in MSNs. CORDIAL is a social and opportunistic algorithm that exploits
the human behavior concerning mobility and community membership. Especially, CORDIAL
implements the query forwarding phase that looks for available services in the network by leveraging
on the communities of nodes within the network (such communities are built based on the mobility of
the nodes – and then of their users) and by forwarding the query to the nodes that have higher
probability of answering. Furthermore, CORDIAL implements the advertisement dissemination phase
(which communicates to the other nodes the availability of a service in the network) by proactively
disseminating service advertisements among devices that might be more interested in accessing the
service. In our preliminary work [8], we evaluated the performance of CORDIAL with respect to
metrics like Proactivity, message delivery rate, Query Response Time and number of answered queries
in a simplified simulation scenario and against a social-based flooding strategy and SIDEMAN
(ServIce DiscovEry in Mobile sociAl Networks) [9,10]. In this work, we provide a detailed description
of CORDIAL and an extended evaluation of its performance.

The paper is organized as follows. Section 2 describes some needed background material, giving a
summarization of the major related works in the field of MSN, introducing the opportunistic routing
strategies considered, and reporting the service discovery algorithms in highly distributed and mobile
environments. Section 3 gives an overview of CORDIAL and describes the three phases that
characterize the forwarding strategy of this service discovery algorithm, namely, reactive phase,
proactive phase, and message reception. Section 4 introduces the experimental settings describing the
metrics, datasets employed, and the behavior of the nodes. It also briefly introduces a strategy based

on the technique of flooding used to assess the performance of CORDIAL. Section 5 reports the
experimental results, whereas Section 6 ends the paper by presenting conclusions and giving a
perspective for future works.

2. Background and Related Works

2.1 Mobile Social Networks
We assume a fully decentralized architecture of a MSN, where all communications among nodes (usu-
ally smartphones) in the network happen in an opportunistic way. Specifically, we consider a commu-
nity of mobile nodes, each representing an individual who moves within a bounded region where there
are also other mobile nodes that may be with common purposes or interests. Occasionally, a node
establishes a contact with another node by using a short-range communication interface. These nodes
constitute a MSN.
In our work, we assume that nodes in a MSN cooperate by offering and using each other’s services. A
service can be any resource that can be shared by a node, for example a data, the connection to an
access network, the capability to store and process data etc. To this purpose, the nodes in the MSN
implements service discovery mechanisms that include four protocols of service advertisement, query,
selection, and access [1]. In particular, we focus on the first two steps of advertisement dissemination
and query forwarding, since we consider them highly challenging for our scenario. The goal of the
advertisement dissemination phase is to allow service providers to advertise a service to nodes encoun-
tered along the time. A service advertisement is a compact data structure describes the most key fea-
tures of a service, i.e. its functional and non-functional characteristics (note that the actual formalism
used for the service advertisement is out of the scope of this paper). We assume that every advertise-

ment advj is described with the set of interests SIj  I, where I = {y1, …, ym} is the set of all possible
interests. The interests classify the advertisements, queries and nodes according to some pre-existing
categories. Some notable example can be sport and games, entertainment, news, forecast, messaging
or social services, navigation and so forth. The query forwarding phase allows a node to retrieve avail-

able services. During this phase, a node first creates the query q  Q that it injects in the network in

order to find a node carrying an advertisement matching with q. The query is modeled by a message
that contains the list of interests describing the required service. To the purpose of query forwarding,

each node maintains a service cache CH, and it implements a service lookup function, denoted with

: Q  CH. Given an input query q, function  returns a set of matching services in CH (i.e. services
whose advertisements match with the interests of q). The pending queries originated by node ni are
stored in the pending query set (denoted PQi) until a service matching with the query is found.
From the networking point of view, we model the MSN at time t as a directed graph Gt = (V, Et), where

V = {n1, … , nv} is the set of nodes and Et = {eij = (ni, nj) : ni, nj  V} is the set of links among the nodes
at time t. Links in Et are directed, indicating one-way communications typical of opportunistic net-

works. The neighborhood 𝑁௜
௧ of ni at time t is the set of nodes nj  V such that eij  Et. In other words,

the neighborhood of ni consists of all nodes that can communicate with ni at time t.
Since the nodes are carried by their human owners, they have the same mobility of their owners. Spe-
cifically, they move, meet with other nodes (i.e. become neighbors) and thus form communities ac-
cording to the social pattern of their owners. Based on this observation, algorithms and applications
designed for MSN exploit the existence of communities to optimize the diffusion of information, the

routing and the access to the available resources in the MSN [1]. For this reason, nodes in the MSN
use a community detection algorithm to determine the community to which they belong.
To our purposes, we consider four distributed community detection algorithms, namely Simple, Mod-
ularity, K-Clique [11] and Draft [12]. The first three algorithms belong to the same family and they
assume that each node ni maintains a familiar set, which contains nodes whose cumulative contact
duration with ni exceeds a given threshold. The community of node ni is thus a superset of the familiar
set of ni that also includes nodes identified by the community detection algorithm. In particular, the
community detection algorithm analyses the familiar sets of the nodes: if two nodes have similar fa-
miliar set they are added to the each other’s community. The three algorithms differ in the way they
merge the communities: Simple merges the communities of two nodes if they overlap over a given
threshold; K-Clique merges the communities of nodes ni and nj if there are at least k–1 nodes in the
familiar set of nj that are in the community of ni; Modularity merges the communities of nodes ni and
nj if the familiar set of the community members of nj, which is not included in the familiar set of ni,
belongs to the community of ni.
Note that in all these three algorithms the community of a node is an increasing set, since there are no
mechanisms to evict nodes from a formed community. On the other hand, they can be easily combined
with a simple aging mechanism of contacts to this purpose, as presented in [13].
Similarly to the previous ones, also the Draft algorithm uses a cumulative contact duration among
nodes with a threshold to add nodes to a community. On the other hand, it also includes a decay mech-
anism to evict nodes from a formed community, which decays the cumulative encounter duration of a
factor δ (the decay ratio) among each pair of nodes every t seconds (the frame length parameter).

2.2 Opportunistic Routing Strategies
In this work, we assess the performance of CORDIAL combined with four routing protocols for
opportunistic networks, namely Epidemic [14], Spray & Wait [15], Prophet [16] and BubbleRap [17]
that we briefly summarize here.

Epidemic exploits a simple flooding-based strategy for dissemination of messages in the network. Its
messages diffusion mechanism works as follows: when two nodes ni and nj enter in contact, they
exchange their respective summary vector, which contains the list of messages they have generated
or received so far. Then the node ni requests to nj the messages that are in the list of nj but that are not
in its own list, and nj does the same. To reduce the overhead due to the exchange of the summary
vector each message is represented by a unique, network-wide identifier. Furthermore, each message
is associated to a hop count that limits the number of times it can be forwarded to other nodes. When
the hop count of a message becomes 1 the message can be only delivered to its destination. Finally,
the destination can confirm the reception of a message by sending an acknowledgement to the node
that originated the message.

Spray & Wait is an extension of Epidemic that limits the number of copies of a message in the network.
It operates in two phases: spray phase and wait phase. When a node nj originates a message, it
switches in spray phase, in which it makes L copies of the message and it forwards up to L–1 copies
to other rely nodes that did not receive the message yet. When a relay node nj receives a copy of the
message, it switches to the wait phase. If during the spray phase ni encounters the destination of the
message, then it concludes the diffusion of the message. Otherwise, it remains with the last copy of
the message and switches to the wait phase.

Prophet is another extension of the Epidemic algorithm which exploits some assumptions about the
mobility of the nodes to increase the probability of message delivery success. In particular, since
nodes move according to the mobility of their human owners, they present repetitive mobility patterns

because humans visit various places with different probabilities and frequencies (for example, they
tend to visit the place where they live or work frequently and periodically). Based on this observation,
Prophet introduces the concept of delivery predictability P(ni, nj) which estimates the probability that
node ni is able to deliver a message to node nj.

Similarly to Epidemic, when two nodes ni and nj encounter they exchange their summary vectors.
However, in Prophet this vector also includes the estimation of the (well-known) delivery
predictability values for all the destination nodes of the messages. This information lets a rely node
to forward a message to other rely nodes that have a higher chance to deliver the message to its
destination.

The delivery predictability between any pair of nodes decays over time with a decay factor, and it
increases of a given factor whenever they encounter again. The delivery predictability is transitive: if
node ni meets frequently node nj, and node nj meets frequently node nk, then the delivery predictability
between nodes ni and nk is also high.

Differently than the other algorithms, BubbleRap leverages on the social behavior of the users (and
then of the nodes) to deliver messages. In particular, it exploits the centrality of a node in the network
and the communities of nodes to take forwarding decisions. BubbleRap computes the communities
using the K-Clique algorithm and it estimates the centrality of a node based on the number and
frequency of encounters of the node with other nodes, which is expressed in terms of two ranks: one
global and one computed within communities.

When a node ni originates a message for a destination nj, it forwards the message to nodes with a
higher global rank, and it is forwarded with the same rule by the relay nodes, until it reaches a node
in the same community of the destination. From this point on, the message is forwarded to nodes that
have higher rank in that community until it reaches its destination. Note that this mechanism can be
implemented in a distributed way and it does not require ni to know the rank of every other node in
the network but, rather, to compare its own rank to that of other nodes it encounters.

2.3 Service Discovery Algorithms
Service discovery in highly distributed and mobile environments, similar to that of MSN, have been
investigated for over a decade [7,18]. In particular, service discovery protocols addressing mobile ad-
hoc networks [19,20], delay-tolerant networks [21], or opportunistic networks [22,23,24] are
particularly relevant for our work since these networks have many similarities with MSN. In particular,
[19] and [21] offer service discovery and delivery by means of a peer-to-peer model which, however,
is not suitable to tolerate the frequent and prolonged disconnections typical of MSNs. Furthermore,
they disregard the aspects related to the mobility of users and of their sociality. The approach proposed
in [20], which also addresses service discovery in mobile ad hoc networks, exploits a reliable broadcast
mechanism and assume low mobility of nodes. The services are described based on their input/output
parameters (rather than a service identifier), and their advertisements are spread by means of the
proactive exchange of tables that each node stores locally and that contain a mapping between the
service and the I/O parameters needed. The query diffusion is based on a flooding mechanism, and,
differently than CORDIAL, does not exploit any knowledge about sociality and mobility of users.

User sociality and interests are instead considered in [24,25], whose main focus however is in energy
efficiency and in privacy, and in [22] that devises a strategy for discovery of resources (which are
classified based on the user interests) in a delay-tolerant network. Similar to our approach, the
discovery of resources in [22] is community-based, however, if the resource is not found, then the
protocol reverts to a flooding-based strategy. Differently from this approach, CORDIAL also

implements a proactive strategy for the diffusion of the service advertisements with the goal of
proactively store advertisements of interest for the user.

The authors of [23] propose a proxy-based, OSGi-based middleware for service provisioning in
opportunistic networks. Its idea is to make a service proxable if it can be offered by more than one
node in the network. However, this work focuses on how the services are managed by the proxies,
where the actual strategy for service discovery can be arbitrary. This idea is further refined by the same
authors in [26], which also introduces an opportunistic location-aware algorithm for service discovery
and invocation. The node location is exploited during the forwarding message to select the rely nodes
that are closer to the destination during the service advertisement, in order to limit the advertisements’
propagation only to regions close to the provider itself, and to forward the service requests during the
service invocation only through nodes close to the provider. Due to the heterogeneity of the nodes,
CORDIAL does not rely on the assumption that all nodes are aware of their position. Indeed, such
information could be not available on resource-constrained devices, thus making the location-based
algorithms not always effective.

In our previous works [9,10] we proposed SIDEMAN, a service discovery protocol for MSN that,
similarly to CORDIAL, leverage on human behavior, in particular on membership to communities and
mobility, to build opportunistic and social-aware mechanisms of service discovery. In particular, both
algorithms diffuse service queries and advertisements in the network by exploiting the similarity of
the users’ interests and the membership to common communities, aiming at limiting this diffusion to
nodes that are not interested in. However, they differ in the forwarding strategy (specifically in the
selection of forwarding nodes): SIDEMAN forwards query and advertisements to members in the
current community of a node that have interests matching with the query, while CORDIAL chooses
members in the community with highest social centrality metric. Another significant difference in the
two algorithms is in the algorithm for selection of advertisements and queries to store in cache. In
particular, SIDEMAN selects advertisements and queries whose interests match those of the
community members, while CORDIAL selects advertisements and queries with highest similarity
index.

3. Overview of CORDIAL
CORDIAL is a service discovery algorithm executed by each node in the MSN. Each node in the MSN
plays three roles: provider of services, broker and user of the services. When a node decides to offer a
service to the other nodes in the network, it forwards the corresponding advertisement to other nodes
in its community that may be interested. In turn, these nodes cooperate to the dissemination of the
advertisement by forwarding it to other nodes in their respective communities. At the same time, if a
node is looking for a service, it disseminates the corresponding query to all nodes in its community,
which in turn, forward the query to their communities. In this respect, each node also acts as a broker:
if it happens that it receives a query and an advertisement that match, it informs the node that raised
the query.

The two phases of query dissemination and advertisement dissemination are independent, and they are
executed in two different ways by CORDIAL, namely the reactive phase (for query dissemination) and
the proactive phase (for advertisement dissemination). The reason for using a reactive approach for
query dissemination lies in the need of providing a fast response to the query (i.e. to reduce the Query
Response Time), while advertisements, that do not need to be answered, are diffused in a proactive
way. Another important feature of CORDIAL is that, to reduce the communication overhead, each
node restricts the forwarding of queries and advertisements to other nodes that are in its own

community. To this purpose each node independently computes its own community of nodes based on
parameters like the inter-contact time and the last time of encounter with other nodes.

The schemas of the reactive phase and proactive phase of CORDIAL are shown in Figure 1.a and
Figure 1.b respectively. When a node ni requires a service, it executes the reactive phase (Figure 1.a)
that creates the query q and executes the function f(q) to look for any advertisement matching with the
query that is stored in the local service cache CHi of ni. If there is at least one advertisement in CHi
that matches q, then ni selects among these the one that best matches with the query and it accesses the
service. Otherwise, ni starts the query forwarding. The query forwarding is limited to the nodes in the
same community of ni to limit the network traffic while keeping high chance of finding the service, in
fact, as discussed in [27], nodes with similar interests tend to meet more frequently than nodes with
non-overlapping interests. To this purpose, CORDIAL exploits a community detection algorithm,
which is executed in background, and that guarantees an updated community set of ni when needed.
This set includes nodes that have significant social ties with ni.

Figure 1. The three phases of the CORDIAL algorithm.

To the purpose of query forwarding, ni builds the query forwarding set (FSi) that is a subset of the
community of ni. The nodes in the community of ni are selected with the goal of reducing both the
Query Response Time and the number of copies of the same query. In particular, FSi includes nodes
with interests matching the query q or nodes that can forward q to friends whose interests match with

q. Once the node carrying the query finds a matching advertisement, it sends back the advertisement
to ni.

The proactive phase of CORDIAL is periodic. Its goal is to disseminate advertisements and queries
carried by ni to nodes potentially interested in such messages (Figure 1.b). The proactive phase uses
different strategies to forward advertisements and queries. For the dissemination of queries stored in
the pending query set PQi which still remain to be answered (and that can either be generated by ni
itself or by another node), CORDIAL adopts the same strategy used in the reactive phase. In particular,
it builds the forwarding set and delivers q to any node in it (whenever it has the chance). The
dissemination of advertisements instead is used to proactively disseminate any advertisement advj in
its cache CHi to other nodes that might be interested. To this purpose, ni selects as relay nodes its
neighbors that in the past did not already receive advj and whose interests match with those of advj. As
a consequence of the proactive phase, it may occur that ni receives an advertisement advj not directed
to itself but to another node. In this case, ni stores advj in a local cache, called FCi (it is the forwarding
cache), and it acts as relay node for the advertisements.

The reception of messages is described in Figure 1.c. Node ni can receive asynchronously a message
from another node. If the message received is a query q, then ni executes the function f(q) in order to
check if it carries an advertisement matching with q. If this is the case, ni acts as relay node in order to
forward the advertisements matching with q toward its final destination (relay advertisements).
Otherwise, ni stores the query in the pending query set PQi waiting for a matching advertisement. If
the message m received is the advertisement adv, ni first removes all the pending queries now answered
from adv. Then, ni selects the queries received from other nodes that are now answered from adv,
namely the set D’. After this step, ni checks if the requester of the queries in D’ is in contact with ni, if
this is the case ni delivers the advertisement to the final destination otherwise ni selects one of the
nodes to which it is currently in contact with and that can quickly deliver the advertisement to the final
destination.

Data structure Description
Forwarding Cache FCi contains advertisements of services (either generated by the node ni or received

from other nodes) that still have to be forwarded by ni to their destination.

Pending Query PQi: contains the queries received from other nodes and the queries generated by ni
for which that ni did not find a matching advertisement yet.

Service Cache CHi: contains the service advertisements received from other nodes that are of inter-

est for ni.
Ei(j) the (sorted) list of past encounters between ni and node nj,
icti(j) the inter-contact times that contains the average time between two successive

contacts of node ni with node nj,
lti(j) the last time of encounters, which contains the last time ni encountered the node

nj
Table 1. Main data structures managed by CORDIAL.

3.1 Forwarding Algorithm of CORDIAL
The MSN is modeled as a temporal graph Gt that evolves over time due to mobility of nodes. Note
that the temporal graph is not built explicitly by the nodes, but, rather, each node keeps a few data
structures that implicitly represent its own view of the graph. From the point of view of the node ni,
that cannot observe the entire network but only its neighborhood, the graph Gt changes when its
neighbor set changes (we call this event a local change). Hence, in each of such local change events,
ni may acquire new neighbors (which means that it starts some contacts with new nodes) and it may
lose some other neighbors (which means that the contacts with those neighbors are terminated). Since

the information about contacts and their duration is necessary to run the community detection
algorithms, each node records the history of contacts. In particular, node ni maintains three data
structures (refer to Table 1):

 Ei(j): the (sorted) list of past encounters between nodes ni and nj, for each nj  V; encounter k is
stored in a pair 〈𝑡௞

ᇱ , 𝑡௞
ᇱᇱ〉, where 𝑡௞

ᇱ and 𝑡௞
ᇱᇱ are the start and end times of a single encounter be-

tween ni and nj, respectively.
 icti(j): the inter-contact times that contains the average time between two successive contacts of

node ni with node nj, for each nj  V;
 lti(j): the last time of encounters, which contains the last time ni encountered the node nj, for

each nj  V;

Note that these three data structures are local to each node and that they represent the only explicit
information that each node keeps about the temporal graph Gt. The inter-contact time icti(j) is
defined as:

𝑖𝑐𝑡௜(𝑗) = ൜
∞

𝐸[{𝑡௞ାଵ
ᇱ − 𝑡௞

ᇱᇱ ∀1 ≤ 𝑘 < |𝐸௜(𝑗)|}]
𝑖𝑓 𝐸௜(𝑗) = ∅;

𝑖𝑓𝐸௜(𝑗) ≠ ∅;

and lti(j) is defined as:

𝑙𝑡௜(𝑗) = ቊ
∞

max
〈௧ೖ

ᇲ ,௧ೖ
ᇲᇲ〉∈ா೔(௝)

𝑡௞
ᇱᇱ

𝑖𝑓 𝐸௜(𝑗) = ∅;

𝑖𝑓𝐸௜(𝑗) ≠ ∅;

Each node updates the contact history in a seamless way, any time a local change event occurs. Since
contacts lost interest after a certain period, elements in sets Ei(j) are evicted when their age exceed a
given age. Furthermore, each node ni maintains the three caches forwarding cache FCi, pending query
PQi, and service cache CHi to manage queries and advertisements either generated by the node itself
or received from other nodes.

The reactive phase of CORDIAL is shown in Algorithm 1. Node ni first generates the query q
containing the set of interests of the needed services. If the service cache CHi already contains some
advertisements matching with q, i.e. 𝑓(𝑞) ≠ ∅ (line 2 in Algorithm 1), then ni can select and access
the service advertisement. Otherwise, ni executes the community detection algorithm
DetectCommunity.

Algorithm 1 Reactive phase
1: q = generateQuery(SIi)
2: if f (q) ≠  then
3: select and access one of the services selected by  (q)
4: else
5: C = DetectCommunity(Ni

t , CTi, τ)
6: Ĉ = FS(C, q)
7: forward q to top k nodes in Ĉ

Note that CORDIAL does not constraint the use of a specific community detection algorithm, instead,
it can be configured with any existing distributed community detection algorithm [12]. Given the
community Ci (line 5 Algorithm 1), ni builds the query forwarding set FSi and assigns to every node
𝑛௝ ∈ 𝐶௜ ∩ 𝐹𝑆௜ a score 𝜌௝ , which provides an indication of the capability of nj in answering to q. The
score 𝜌௝ assigned to nj is given by:

𝜌௝ =
𝑠൫𝑞, 𝐼௝൯

1 + 𝑖𝑐𝑡(𝑖, 𝑗)
+ ෍

𝑠(𝑞, 𝐼௪)

1 + 𝑖𝑐𝑡(𝑗, 𝑤)
௪∈஼ೕି஼೔

௜௖௧(௜,௪)வ௜௖௧(௝,௪)

 (1)

In particular, the first term of Eq. 1 is the ratio between the similarity of the interest’s query and the
interests of nj with respect to the inter-contact time between ni and nj. In the second term of Eq. 1, we
consider the set difference between the communities Cj and Ci and we apply the constraint that the
inter-contact time between w  Cj – Ci and ni is higher than the inter-contact time between every w 
Cj – Ci and nj. In this way, the second term of Eq. 1 selects those nodes that belong to Cj only and such
that nj visited them more frequently with respect to ni. The second term is the ratio between the
similarity of the interest’s query and the interests of w with respect to the inter-contact time between
nj and w. This last part measures the capability of node nj to enter in contact with nodes that might
answer the query q. The node ni then selects the top k nodes with the highest score ρ.

The proactive phase of CORDIAL is described with Algorithm 2. The proactive phase manages the
forwarding of queries and advertisements to nodes potentially interested in such messages. The first
part of Algorithm 2 exchanges the advertisements stored in the service cache CHi (lines 1– 3).

Algorithm 2 Proactive phase
1: for all adv  CHi do
2: Vt = { nj  Ni

t | s(Ij , adv) > τ adv  CHj }
3: Forward adv to Vt
4: for all adv  ForwardingCachei do
5: if final destination of adv is in contact then
6: Forward adv to final destination
7: else
8: nk = TemporalForwarder(adv)
9: Forward adv to nk
10: for all q  PQi do
11: C = DetectCommunity(Ni

t , CTi, τ)
12: Ĉ = FS(C, q)
13: forward q to top k nodes in Ĉ

For every adv in CHi, ni builds the set Vt composed by the nodes in the neighborhood 𝑁௜
௧ of ni at time

t whose interests match with adv and that did not already receive adv. Once Vt has been computed,
node ni multicasts adv to Vt. After this first round of message exchanges, the node ni checks if some of
the advertisements stored in the forwarding cache FCi can be delivered to the final destination (lines
4–9). If adv is in FCi, then it is directed to a node nj, if nj is currently in contact with ni then ni directly
delivers the advertisement to nj. Otherwise, ni executes the TemporalForwarder function, which selects
the relay node nw  Ni

t with the lowest remaining inter-contact time between nw and the final
destination of adv, namely the node nk. To this purpose, the remaining inter-contact time (r-ict) between
nodes nw and nk is defined as r-ict = |ict(w,k) – [t – lt(w,k)]| and it measures the difference between the
average inter-contact time between nw and nk and the time elapsed since the last encounter between nw
and nk. The smaller the r-ict, the more likely nw will meet nk again, and nw will deliver adv to the final
destination. If the TemporalForwarder function finds nw ≠ ni, then ni forwards the adv to nw, otherwise
ni stores adv in its forwarding cache FCi. The last part of Algorithm 2 exchanges the pending queries
carried by ni (line 10–13). For every q  PQi, node ni applies the same mechanism described in
Algorithm 1 lines 5–7.

Algorithm 3 distinguishes between the reception of queries from the reception of advertisements. If
ni receives a query q (lines 1–10), then it executes the function f(q) to find all the advertisements in the
service cache CHi matching with q. In this case ni checks if the node requesting the query, namely r,
is in contact. The node r is the node waiting for an answer for the query q. If r is in contact, then ni
forwards the set of matching advertisements f(q) to r, otherwise ni selects the nodes nk with the lowest
r-ict from r. If f(q) =  then ni stores the query in its pending query set. This last case implements the
collaborative strategy adopted by CORDIAL: nodes that cannot answer to a query take care of finding
an answer to it. If ni receives an advertisement adv (lines 11–28) then ni checks all pending queries q

 PQi that match with adv (i.e. such that s(q, adv) is greater than threshold τ; such set is named D
(lines 13). Set D is removed from PQi, because it contains queries that are now answered.

Moreover, ni checks all pending queries carried on behalf of other nodes (queries whose requester is
not ni) that are answered with adv, such set is named D’ (lines 15). For every query q in D’, if the
requester r of q is in contact with ni, then ni forwards adv to r; in this way r will receive an answer to
at least one of its pending queries. If r is not in contact, then ni selects the node nk with the lowest r-ict
and it forwards adv to nk. After this round of checks, the node ni checks which is the final destination
of adv. If the final destination is not ni, then ni received an advertisement addressed to another node.
In this case, ni has been selected as relay node. Node ni forwards adv to its final destination (if it is in
contact with), otherwise ni forwards adv to the node with the lowest r-ict. The last operation in
Algorithm 3 is to store the advertisement adv in CHi only if the interests of m match with the interests
of ni.

Algorithm 3 On messages reception
1: On reception of a query q:
2: r is the requester of q
3: if f(q) ≠  then
4: if r is in contact then
5: Forward f(q) to r
6: else
7: nk = TemporalForwarder(r)
8: Forward f(q) to nk
9: else
10: store q in PQi
11: On reception of advertisement adv:
12: let dst be the final destination of adv
13: D = { q  PQi | requester(q) = ni s(q, adv) >

τ}
14: Remove D from PQi
15: D’ = { q  PQi | requester (q) ≠ ni  s(q,adv) >

τ}
16: for all q  D’ do
17: r requester of q
18: if r is in contact then Forward adv to r
19: else
20: nk = TemporalForwarder(r)
21: Forward adv to nk
22: if dst ≠ni then
23: if dst is in contact then
24: Forward adv to dst
25: else
26: nk = TemporalForwarder(dst)
27: Forward adv to nk
28: if s(adv, Ii > τ) then add adv to Cache CHi

4. Experimental Settings

4.1 Mobility Datasets
The performance of CORDIAL is evaluated through simulations using two datasets made up by co-
location traces obtained studying two different sets of individuals in the physical world. While the
first set acts in a bounded environment, the second, on the contrary, acts in an external one. The
datasets are respectively Cambridge [28] and MDC Nokia1 [29,30].

The Cambridge dataset is the result of the work of Scott et al. [28]. The experiment was carried out
for 12 days and involved 36 individuals; everyone carrying an iMote device (from Intel). The devices,
which detected other devices within a radius of 30 meters, were calibrated to scan (i.e. to detect
contacts) every 120 seconds. Contacts were stored in a flash memory with a structure showing MAC
address, start time contact, and end time contact. MDC Nokia dataset was collected by Lausanne’s
Nokia Research Centre from 2009 to 2011. The experiment involved 185 volunteers who were
provided with a Nokia N95 smartphone. Data were collected in a fully transparent way before the
participant’s eyes. Scans were carried out every 600 seconds along with the readings of GPS, other
sensor data, and parameters of the smartphone. The data collected, locally stored, were automatically
sent to the server each time a device hooked up to a WLAN. These include data pertaining to social
interactions (calls, messages, and scan results); data pertaining to localizations (GPS and WLAN
access); data pertaining to multimedia content and their use; data pertaining to users’ behavior (what
kind of applications are installed on their devices, their frequency use, the activities monitored by the
accelerometer, etc.).

Co-location traces are fragments of information, which are detected through short-range
communication interfaces, describing contacts taking place among people. We got the co-location
traces from either contact or localization traces of the two datasets, using them in the simulation of the
service discovery algorithms. We initially analyzed the co-location traces based on social and temporal
metrics to extract some parameters regarding the users’ behavior.

To analyze social characteristics of the co-location traces we used the average cardinality of the
recognized communities. Thanks to this measure, it is possible to notice how the mobility in two
different areas and with two different samples affects the tendency of the nodes to interact with each
other. Concerning the temporal characteristics of co-location traces, we analyzed the number of
contacts between pairs of nodes, the inter-contact time, and the contact duration metrics. Specifically,
the number of contacts between pairs of users is an indicator of the mobility pattern since the amount
of contacts the users realize over time highlights their social activity. The inter-contact time measures
the time elapsed between two subsequent contacts of nodes. This metric indicates the regularity of the
contacts, and, consequently, it is also an indicator, based on the mobility of nodes, of the frequency of
encounters. The contact duration metric is a measure of the average distribution of the contacts
duration among nodes. Since long contacts mean deeper social relationships, the contact duration also
indicates the familiarity degree among nodes. A more detailed explanation of the temporal metrics
can be found in [31].

4.2 Simulation

For our purposes, we used the ONE (Opportunistic Network Environment) simulator [32], which is
developed at Aalto University to study communications among mobile nodes in opportunistic
scenarios. The ONE is designed with a plug & play mechanism, which simplifies the addition of the

1 Portions of the research in this paper used the MDC Database made available by Idiap Research Institute, Switzerland
and owned by Nokia.

needed components to run a new simulation scenario. It is Java-based, and its strength concerns
routing and application protocols which can be evaluated upon customizable settings by the users.

The ONE can define the model of mobility using either co-location traces of external datasets or a
generator of simulated movements (Map-Based Model, Random Waypoint). It models external events
as generation of messages and simulates their transmission and receipt by means of various routing
strategies.

4.2.1 Nodes behavior

Nodes (i.e. devices) in our service-oriented MSN operate the main phases of service discovery:
advertisements generation, query generation, and spread of services to other nodes. These phases are
carried out by exploiting the opportunity of communications among nodes that, in turn, depend on
the social relationships, habits and interests of the nodes themselves.

The advertisement generation rate is relative to the services that are assigned and stored by nodes
within their own service cache without the help of any service discovery algorithm. A constant
number of nodes, called service providers, is established at the early stage of the trial. These nodes
are chosen in a completely random fashion, and each of them generates a constant number of
advertisements. About our simulation, the number of service providers is set to 20. Each service
provider generates 5 advertisements and stores them in its cache. At every advertisement is assigned
one interest, which, in turn, is selected by permuting the set of interests associated to the node and
choosing the first one.

The query generation rate is modelled as a Poisson process that generates an average of λ queries in
a time period t. Specifically, each t minutes are generated λ queries to be assigned to λ nodes randomly
selected from the set of nodes. In our simulations, we set λ = 2 for all the experiments.

Advertisements and queries diffusion strategy leverages the relations among nodes with similar
interests. However, all datasets used in this simulation do not provide information about interests of
the nodes, and for this reason it was necessary to model them. In particular, we assumed that the set
of interests is fixed at the beginning of each execution of the simulation, and each node is associated
with a constant number of interests. The arrangement of the interest depends on Zipf’s distribution,
which is associated to a skew parameter. If the skew parameter is equal to one, the distribution
reproduces the human behavior under the aspect that many people have few common interests and
very few people have lots of common interests. This implies that there will be a higher gap between
nodes with many common interests and nodes with few common interests. Otherwise, if the skew
parameter is near to 0, it means that the interests all have the same popularity. In our simulation, the
total number of interests is 100 and at each node is initially assigned 10 interests randomly chosen,
whereas one single interest is randomly assigned to each query or advertisement.

Each node exploits its own mobility (as it results from the mobility traces of the datasets used in the
simulations) and the mobility of other nodes for spreading messages. Since there cannot be direct
paths between the sender and the recipient, each node cooperates forwarding messages by using the
store-carry and forward model.

4.2.2 Simulation parameters and evaluation metrics

We perform two kinds of simulations. One simulation conducted over a brief time period of 144 hours
aimed at analyzing in detail the performance of CORDIAL. The first simulation (presented in Section
5.1) concerned the use of a large number of traces to achieve a 97.5% confidence limits and a 0.025%

probability of error for all the parameters under study. The second simulation (presented in Section
5.2), is aimed at analyzing the behavior of CORDIAL, S-Flood and of another service discovery
algorithm called SIDEMAN [10] over a long time period of 12 days in a specific sample trace of the
datasets.

All the parameters of the simulations and their settings are briefly summarized below.

The data transmission rate of communications is set to 2Mbps, whereas the transmission radius is set
to 10 meters (which is compatible with the Bluetooth standard). The number of nodes is fixed to 36
for Cambridge, and 185 for MDC Nokia. The similarity index is set to one (i.e. τ = 1). The value of
the familiar threshold 𝑇௧௛ is set to 700, whereas the 𝑘 value is equal to 5. The parameters of the
routing algorithms are those of default. Specifically, the TTL of BubbleRap is set to 24 hours; the
maximum number of copies that can be spread into the network by Spray & Wait is set to 10, and
Prophet has the initialization constant 𝑃௜௡௜௧ set to 0.5, the ageing constant 𝛾 of the delivery
predictability set to 0.999885791, and the transitive constant β set to 0.9.

In order to evaluate the performance of our service discovery algorithm, we evaluate the following
metrics:

 Accuracy is the ratio between the number of useful advertisements and the total number of
advertisements. Both measures are stored within the cache of a node. Formally, it is given by
|஺ᇲ|

|஺|
. Such metric shows the efficacy of a service discovery algorithms in spread of services of

interest instead of virtually useless services. Its value falls within the range [0,1], where 0
represents the worst-case scenario and 1 the better one.

 Proactivity measures how efficient is a service discovery algorithm in reducing the number of
queries to obtain an advertisement. Proactivity is the result of the ratio between the number of
time the node finds an advertisement as useful service (already stored in the cache) and the
number of time in which that node generates a query to ask for that service. Formally, it is

given by
|ொ಴ಹ|

|ொ|
. Its value falls within the range [0,1], where 0 represents the worst-case scenario

and 1 represents the better one.

 Query Response Time measures the average of time elapsed between the generation of a query
and the reception of a matching advertisement. For a given query 𝑞∊ 𝑄஺ generated at time 𝑡′,
the response time for 𝑞 is defined as 𝑡ᇱᇱ − 𝑡′; where 𝑡′′ is the time in which we receive an
advertisement corresponding to 𝑞 (with 𝑡ᇱᇱ > 𝑡′). This metric measures the efficacy of the
algorithm to provide a service for a node as quickly as possible.

 Service Cache and Forwarding Cache inform about the memory space that nodes require to
perform a service discovery algorithm. They respectively measure the average number of
advertisements that nodes retain in their memory over time, and the average number of
advertisements that nodes receive but that are not addressed to them. The latter are stored in a
special space of memory labelled forwarding cache.

4.2.3 Flooding-based service discovery

In addition to SIDEMAN, CORDIAL has been compared with a strategy based on the technique of
flooding to assess its performance. The reason for this choice is that a flooding-based strategy is really
aggressive in terms of delivery and latency (and thus it is a good benchmark from our purposes),

while it is not social-aware, which gives us the possibility to assess the social-aware diffusion strategy
of CORDIAL. This technique, henceforth named S-Flood [33], exploits the mobility of the nodes to
implement the phases of research and publication of services. Differently from CORDIAL and
SIDEMAN, S-Flood does not exploit the social characteristics of the nodes either for advertising its
own services or to research services needed.

Particularly, S-Flood leverages the mobility of the nodes for allowing the spreading of both queries
and advertisements to nodes with which it comes into contact. Consequently, no community detection
algorithm is necessary.

Another significant difference of S-Flood, with respect the other service discovery algorithms, is the
absence of cooperation among nodes. As a result, two structures are affected by variations: the
forwarding cache, which is not foreseen, and the pending query, which in S-Flood only contains the
queries generated by node 𝑛௜ that do not have received any answer.

The reactive and proactive phases of S-Flood are similar to that of CORDIAL and SIDEMAN, with
few differences. In particular, in S-Flood both the queries and the advertisements are forwarded to
the whole node’s neighborhood rather than to the neighbors in the relay nodes’ community.

5. Experimental Results
We describe the experimental results of CORDIAL and S-Flood based on the previously introduced
metrics and on the two datasets, namely Cambridge and MDC Nokia. It is worth to recall that the
Accuracy, Proactivity, Query Response Time, Service Cache, and Forwarding Cache metrics have
been analyzed by combining CORDIAL and S-Flood with 4 different routing algorithms.

5.1 Performance of Service Discovery Algorithms

Accuracy

As introduced in Section 3, CORDIAL spreads the advertisements to nodes only if they are interested
in accessing such advertisements (the proactive phase). Therefore, the service cache of nodes running
the CORDIAL algorithm contains only the advertisements of interest for such node. As a result, the
Accuracy metric for CORDIAL is always optimal (Accuracy = 1) during the whole duration of the
simulations.

Figure 2. Accuracy of S-Flood with Cambridge.

Differently, S-Flood spreads the advertisements to all the nodes that are in contact to each other
without any filter, as a result the accuracy of S-Flood tends to decrease with the time. Figures 2 and
3 show the accuracy of S-Flood respectively for the Cambridge and MDC Nokia datasets. In particular,
Figure 2 shows a rapid decrease of the accuracy during the interval [0,2]h, during which the accuracy
quickly decreases to 0.36. After this threshold, the accuracy reduces progressively (the inset graph in
Figure 2 shows such trend). We consider that such decrease is due to the high number of
advertisements exchanged from the nodes during the first two hours of simulation, leading the service
cache of nodes to store advertisements off-topic.

Figure 3. Accuracy of S-Flood with MDC Nokia.

Figure 3 shows the Accuracy metric of S-Flood measured with the MDC Nokia dataset. It is possible
to notice a slower decrease than that the results with the Cambridge dataset. Such effect is motivated
by the lower number of interactions with respect to the Cambridge dataset. Consequently, nodes tend
to exchange a small number of advertisements. We measured that, independently of the trace and of
the routing algorithms used, only the 30% of the services stored within the cache of nodes is of their
own utility.

Proactivity

Results concerning the proactivity of CORDIAL with the Cambridge and MDC Nokia datasets are
shown in Figures 4 and 5 respectively.

By observing the curves reported in both figures, it is possible to observe a growing trend. Such trend
grows remarkably during the interval [0 - 7]h for Cambridge and during the interval [0 - 3]h for MDC
Nokia. By the end of the observation period, CORDIAL performs with Cambridge a proactivity value
around 0.8, whereas the values with MDC Nokia stands at 0.3. The rapid, initial growth of the trend
is explained by the fact that the cache of the nodes is initially empty. Once that nodes enter in contact

to each other they start to exchange services filling out their caches, and, consequently, increasing the
possibility to find the service required within their own caches. After the initial interval, the trend
grows much more slowly because the nodes tend to encounter communities already met, declining
the exchange of services.

Figure 4. Proactivity of CORDIAL with Cambridge.

Figure 5. Proactivity of CORDIAL with MDC Nokia.

Although showing the same trend between the two datasets, it is possible to notice a clear distinction
of the obtained values. This difference is justified by the fact that Cambridge has been collected in a
restricted and constrained environment, leading nodes to exchange a higher volume of advertisements
with respect to the simulation obtained with the MDC Nokia dataset.

The Proactivity metric is slightly affected by the routing algorithms we used. In particular, we observe
from Figures 4 and 5, that Epidemic achieves the worst performance of all, even though it owns the
most aggressive spread strategy. Its proactivity score stands at 78% and 29% for Cambridge and MDC
Nokia respectively. BubbleRap and Spray & Wait stand at 81% with Cambridge and at 30% with
MDC Nokia. CORDIAL limits the behavior of the BubbleRap routing algorithm since its spread
strategy is based on social characteristics of the nodes. Against this background, an algorithm as
aggressive as Epidemic is more restricted than others routing algorithms. It reduces the number of
services propagated, and, therefore, the likelihood of find the desired service within its cache. Finally,
it is possible to see that BubbleRap, which is a more selective algorithm in the diffusion strategy,
achieves the same performance of the others. Despite such feature, it does not come into conflict with
CORDIAL, whose strategy is based on the cooperation among nodes to leverage their shared interests
for spreading services.

Results concerning the Proactivity metric obtained with S-Flood using Cambridge and MDC Nokia
are shown in Figures 6 and 7 respectively.

Differently from CORDIAL, nodes running S-Flood exchange messages with the whole neighborhood.
The effect is that there is a higher exchange of services with respect to CORDIAL. Nonetheless, the
proactivity scores of S-Flood are not less significant than the CORDIAL ones. This is also because
most exchanged services are not useful for nodes. However, CORDIAL obtains the highest value of
proactivity with Cambridge and MDC Nokia both.

By analyzing the effect of the routing algorithms, we notice that BubbleRap performs less than the
others. More specifically, BubbleRap performs a proactivity score of 75% with Cambridge and 27%
with MDC Nokia at the end of the observation time. Differently, Epidemic, Prophet and Spray & Wait
perform a proactivity score of 79% with Cambridge and 29% with MDC Nokia.

Figure 6. Proactivity of S-Flood with Cambridge.

Figure 7. Proactivity of S-Flood with MDC Nokia.

An algorithm as S-Flood, which does not leverage the social characteristics of the nodes, generates a
lower exchange of messages, thereby decreasing the likelihood of find a useful service in its cache,
and, hence, the proactivity score.

Query Response Time

Results concerning the Query Response Time obtained with CORDIAL are shown in Figure 8 and
Figure 9. Both of the graphs show an upward trend. At the beginning of the observation time, it is
possible to notice that the Query Response Time is about 1.5 hour, but it tends to increase over time.

This behavior is a consequence of the fact that people roaming in the environment tend to visit the
same people, and therefore they tend to exchange the same set of the service advertisements.
Specifically, if a node has previously required a service without receiving any answer, even if it keeps
moving around, the probability of encountering another node carrying an answer to its services
remains low. As a consequence, the Query Response Time tends to increase over time.

Despite MDC Nokia is characterized by few contacts and very small communities, the selectivity of
CORDIAL query diffusion strategy allows to forward queries uniquely within their own community
deciding the nodes based on a score assigned to each node. Such strategy allows to mitigate the
negative effects of the MDC Nokia’s performance.

Varying the co-location traces, it is possible to notice that the behavior of BubbleRap, when is used
with CORDIAL, does not adversely affect performance, even if the service discovery algorithm is
equipped with a widely selective query diffusion strategy.

Figure 8. Query Response Time of CORDIAL with Cambridge.

Figure 9. Query Response Time of CORDIAL with MDC Nokia.

Figure 10 and Figure 11 show the Query Response Time to the query obtained by the S-Flood
algorithm by using the Cambridge and MDC Nokia.

Figure 10. Query Response Time of S-Flood with Cambridge.

Figure 11. Query Response Time of S-Flood with MDC Nokia.

The trend of both traces is the same as that obtained using the previous algorithm, except for the
values obtained at the end of the observation time. Specifically, the value of Query Response Time is
25 hours for BubbleRap and 20 hours for the other routing algorithms regardless of the considered
trace. Contrary to CORDIAL, S-Flood’s query dissemination takes place between a node and all other
nodes with whom it comes into contact. This behavior entails a higher diffusion of the requests, and,
consequently, an increase in the probability of finding an answer briefly. This difference is only
noticeable using the Cambridge trace. At the end of the observation time (see Figure 10) the Query
Response Time value is 20 hours.

Service Cache

Results for the average size of the service cache obtained with CORDIAL are shown in Figures12 and
13. In the Figure 12, the trend increases rapidly in the interval [0-4]h. After the initial interval, it

Figure 12. CORDIAL Service Cache with Cambridge.

increases much more slowly by alternating intervals whose dimension remains constant to intervals
whose dimension grows again. By the end of the simulation time, the average size of the service cache
is of 30 services out of 100. This upward trend is justified by the fact that the service cache of each

Figure 13. CORDIAL Service Cache with MDC Nokia.

node is initially empty. Gradually, the nodes meet each other, and their respective service caches fill
up with services exchanged. In the early hours of the Cambridge trace is possible to see a large number
of contacts. This number corresponds to the rapid, initial growth. It is possible to notice that when the
number of contacts decreases, the average number of services stored into the service cache remains
constant.

Figure 13 shows a wavelike, upward behavior that remains constant roughly all the time. At the end
of the observation time, the average size of the service cache is of eight services out of one hundred.
Once again, the trend is correlated to the number of contacts establishing among the nodes of the
MDC Nokia dataset. Comparing the charts of both Figures, it is possible to notice differences between
the average sizes of their respective caches.

Results concerning the average size of the service cache obtained by S-Flood algorithm using the
Cambridge dataset are shown in Figure 14, whereas the results using the MDC Nokia dataset are
shown in Figure 15.

In the Figure 14 the trend grows rapidly during the interval [0-4]h. After the initial interval, it
increases much more slowly by alternating intervals whose dimension remains constant to intervals
whose dimension grows again. In other words, it is the same trend obtained by CORDIAL. By the end
of the observation time, the average size of the service cache is of 94 services out of 100.

Same observations can be done for the Figure 15. It is the same trend obtained by CORDIAL using
MDC Nokia. By the end of the simulation time, the average size of the service cache is of 22 services
out of 100.

Figure 14. S-Flood Service Cache with Cambridge.

Figure 15. S-Flood Service Cache with MDC Nokia.

Comparing the routing algorithms, it is possible to notice the different behavior of BubbleRap. This
algorithm is much more selective than the others, and, as a consequence, it obtains an average size of
84 services for Cambridge and 17 for MDC Nokia.

Forwarding Cache

The Forwarding cache is only measured for the CORDIAL algorithm because the S-Flood strategy
does not provide the capability of storing the advertisements received by nodes. The advertisements
must be delivered either to the final recipient or to the node with the lesser intercontact time.

Results concerning the average size of the forwarding cache obtained with CORDIAL using
Cambridge are shown in Figure 16, whereas the same results using MDC Nokia are shown in Figure
17.

Figure 16. Average dimension of the Forwarding cache with Cambridge.

As can be seen from the first chart, we notice a constant trend where in the interval [0-30]h, the
average size is zero. Subsequently, the dimension starts to grow with a stair-step effect before
stabilizing by the end of the simulation. The values obtained vary according to the routing algorithm.

Spray & Wait obtains a final average size of 86 services, Prophet and BubbleRap nearly 66, and
Epidemic 56. The forwarding cache of Epidemic obtains a lesser average size than that of the others.
As a final point, although Epidemic is an aggressive algorithm its behavior is restricted by CORDIAL.
The consequence is a lesser exchange of services among nodes which affects their subsequent storage
into the forwarding cache. The development of the forwarding cache follows the trend of the number
of the contacts per hour. The more grows the number of contacts, the less is the average size of the
forwarding cache. In this way, the advertisements are delivered to the encountered nodes and removed
from the forwarding cache. Whereas, each time that the number of contacts significantly decreases,
we have an increase of the average dimension of the forwarding cache.

Despite the considerable number of contacts, the initial trend is linear. This behavior is justified by
the fact that the forwarding cache is initially empty. Only when nodes start moving around the
network they begin to receive the advertisements and to fill such cache.

Figure 17. Average dimension of the Forwarding cache using MDC Nokia.

Figure 17 shows a trend similar to that obtained using Cambridge. Particularly, the trend of the
forwarding cache follows the one of the number of contacts per hour of MDC Nokia.

Comparing Figure 16 with Figure 17, we can see that there is a noticeable difference about the average
dimensions of each cache at the end of the observation time. As previously mentioned, this difference
is caused by the number of nodes that meet each other in both traces. By the end of the observation
time, values obtained vary from routing algorithm to routing algorithm: Spray & Wait and BubbleRap
obtain an average forwarding cache size of 12, Prophet of 9, and Epidemic of 7.

From Figures 12 and 16 in conjunction, and from Figures 13 and 17 in conjunction, it is possible to
derive the overheads of CORDIAL computed for both Cambridge and MDC Nokia respectively. Such
results are roughly independent from the routing protocol in use. Even Spray & Wait, which shows
the highest lack of accuracy in keeping the number of advertisements low into the forwarding cache,
shows the same behaviour in both datasets. In addition, it is possible to observe that with MDC Nokia
dataset the memory occupation of CORDIAL is much lower than that of S-Flood (about this algorithm

has been considered only the service cache because it does not need of any forwarding cache), and
with the Cambridge dataset the memory occupation of CORDIAL is also lower than that of S-Flood,
but the gap is much smaller than the previous case.

Concerning the processing costs, each node in CORDIAL has two kinds of costs: those inherent to
the messages processing and those related to the construction and maintenance of the data structures
it needs, in particular to keep its community updated. In both cases the computational costs for the
device are mostly due to a few updates/look-ups of its caches/tables, which are not particularly
expensive (they can be made very efficient with suitable indexes). Also note that, concerning message
processing costs, these mostly depend on the number of messages exchanged, which depend on the
number of services available and of queries generated (both independent on the specific service
discovery protocol at hand), and only in part by the diffusion strategy of the protocol. In our case,
since CORDIAL limits the number of messages (either advertisements or queries) it forwards to the
devices that are potentially interested in, it can limit these costs more than algorithms like S-Flood.

5.2 Comparison of Service Discovery Algorithms

To demonstrate the effectiveness of CORDIAL in discovering and advertising services, we analysed
its behaviour against S-Flood [33] and another algorithm for service discovery in MSN, namely
SIDEMAN [10]. SIDEMAN represents a useful term of comparison for CORDIAL since it is also
designed to cope with the social features of MSN. Specifically, SIDEMAN is characterized by two
elements:

 The use of both reactive and proactive approaches to service discovery for actively submitting
a query and for passively being notified with services of interests.

 The use of a community-based diffusion strategy for the propagation of queries and services.
In particular, query and service messages are forwarded selectively to the members of a com-
munity whose interests match those of the message to be forwarded.

Moreover, SIDEMAN keeps track of communities visited in the past so to avoid keeping detecting
communities already known. Differently from CORDIAL, nodes running SIDEMAN neither consider
the friends of a node for forwarding queries and advertisements nor store-and-carry queries to be
forwarded to other nodes.

Figure 18. Accuracy in Cambridge (left) and MDC Nokia (right)

In order to clarify the difference among CORDIAL, SIDEMAN and S-Flood we report on Table 2 how
such algorithm faces with the two key operations of most of the Service Discovery algorithms:

 To select the forwarding set, the nodes to which forward query and/or advertisement messages.
 To select the queries and advertisements to share with the forwarding set.

Table 2. Features of the Service Discovery Algorithms.

Data structure Select forwarding set Select advertisements and que-
ries

CORDIAL Members of the current com-
munity with highest score
(See Eq. 1 in Section 3.1).

Advertisements and queries with
highest similarity index.

SIDEMAN Members of the current com-
munity with interests match-
ing the query.

Advertisements and queries
whose interests match those of
the community members.

S-Flood

All members of its current
community.

All advertisements and queries to
all community members.

In the following, we analyse the behaviour of the three algorithms reported in Table 2 by means of
the metrics Accuracy, Proactivity, Query Response Time and Service Cache (see Section 4.2.2), and
by using the two datasets previously introduced, namely Cambridge and MDC Nokia (see Section
4.1) over a comparable period of time.

Figure 18 shows the results concerning the Accuracy metric both with Cambridge and MDC Nokia
scenarios. CORDIAL and SIDEMAN algorithms report a perfect accuracy value, while S-Flood
decreases the accuracy as time progresses. More precisely, CORDIAL and SIDEMAN implement a
strategy for reducing the diffusion of advertisements off-topic for a node by matching the topics of
the advertisements with topics of the nodes. Differently, S-Flood spreads the advertisements to all the
nodes that are in contact to each other without any filter, as a result the accuracy of S-Flood tends to
decrease with the time. Results of S-Flood differ in Cambridge with respect to the MDC Nokia
scenario. Such difference is caused by the nature of the dataset we used. Nodes in the Cambridge
dataset have a higher number of contacts with respect to nodes in MDC Nokia. As a result, nodes in
Cambridge share with higher probability information off-topic. Differently, in MDC Nokia nodes
encounter more slowly other nodes by reducing the probability of exchanging information off-topic.

Results concerning the Proactivity metric are reported in Figure 19. In both simulation scenarios, the
proactivity increases with the simulation time. In particular, at the beginning of every simulation,
devices start without any advertisement stored in their cache and, as time passes, they exchange
advertisements with other devices. The proactivity quickly increases during the first 2 days of
simulation, after which the curve still grows but with a slower slope. CORDIAL obtains a value of
proactivity always comparable with respect to S-Flood algorithms (our benchmark) and always higher
than that the SIDEMAN algorithm. By the end of the observation time, the proactivity of the three

Figure 19. Proactivity in Cambridge (left) and MDC Nokia (right)

Figure 20. Query Response Time in Cambridge (left) and MDC Nokia (right)

algorithms is 0.95 meaning that a device willing to access a service finds, with high probability, in its
cache the service advertisement needed. In MDC Nokia the Proactivity metric increases slower than
that the Cambridge scenario, as reported in Figure 19. The MDC Nokia dataset reproduces a more

challenging and interesting scenario. In this case, the mobility of devices is not limited to a specific
region, rather devices are free to roam in large area. However, devices meet only a small portion of
the whole population and the number of contacts per hour is even smaller that Cambridge. These
aspects affect the proactivity value, giving rise to a very slow increase during the simulation time.
Also in this case, by the end of the simulation time, CORDIAL outperforms both S-Flood and
SIDEMAN. Hence, the strategy of CORDIAL for the diffusion of advertisements is effective both in
scenarios highly connected (e.g. Cambridge) and in scenarios highly disconnected (e.g. MDC Nokia).

Results concerning the Query Response Time are shown in Figure 20. The trend for the three
algorithms is the same: the Query Response Time increases quickly during the warm-up period of the
simulation after which the Query Response Time value remains stable until the end of the simulation.
As previously discussed the S-Flood algorithm exchanges the highest number of advertisements
among devices, hence devices have also the highest probability of answering to a query. However,
the drawback of such strategy is an un-controlled diffusion of advertisements, giving rise to a value
of accuracy very low in every scenario. CORDIAL obtains a value of Query Response Time never
noticeable, worse than that of the S-Flood strategy (our benchmark), but with optimal values for both
the Accuracy and the Proactivity metrics. The results of the Query Response Time metric demonstrate
the effectiveness of CORDIAL in controlling the diffusion of advertisement, without meaningful
effects on the responsiveness of the service discovery. When compared with SIDEMAN, CORDIAL
has a Query Response Time always far lower, this provides a further indication of the improvement
of CORDIAL with respect to SIDEMAN.

Finally, Figure 21 shows the Service Cache metric in the Cambridge and MDC Nokia scenarios. As
expected, devices running the S-Flood algorithm store the highest number of advertisements. After
approximately 2 days of simulation, devices running the S-Flood carry every advertisement available
in the simulation. However, most of such advertisements are off topic for the device, as shown by the
Accuracy metric in Figure 2. We notice that S-Food requires an excessive storage capacity for a device,
and this represents a non-negligible constraint for the application scenario to which we refer.
Differently, devices running CORDIAL and SIDEMAN control the number of advertisements stored
their cache. More precisely, devices running SIDEMAN store an average of 30 advertisements while

 Figure 21. Service Cache in Cambridge (left) and MDC Nokia (right)

devices running CORDIAL store an average of 37 advertisements. CORDIAL requires a bit more
storage capacity with respect to SIDEMAN because of the advertisement forwarding strategy. Such
strategy differs from SIDEMAN and it requires more storage capacity. However, the benefits deriving
from the forwarding cache concern an increase in Proactivity and Query Response Time.

5.3 Summary of Simulation Results

The performance of CORDIAL, SIDEMAN and S-Flood depend on the routing protocols implemented
and the dataset on which they are tested. Evaluation metrics highlight that the accuracy of S-Flood
decreases rapidly after the first part of each simulation, whereas the accuracy of both CORDIAL and
SIDEMAN remains stable throughout all simulations. Concerning the Proactivity metric, CORDIAL
performs a better result with respect both SIDEMAN and S-Flood on both datasets. This behaviour is
due to the advertisement dissemination strategy of CORDIAL, based on the cooperation among nodes
through the exploitation of their social characteristics, in contrast with the SIDEMAN strategy, based
on common queries interest, and the S-Flood strategy, based on flooding technique. A diversification
in the algorithms behaviour from one dataset to the other is given looking at the Query Response Time
metric. CORDIAL performs a better execution with respect SIDEMAN, highlighting that the control
of the advertisement dissemination, does not negatively affect the responsiveness of the service
discovery. Regarding the comparison with S-Flood, CORDIAL allows to forward targeted queries
selecting nodes within the community of the node sender, even reducing poor performances on a
dataset with a limited number of communities as MDC Nokia. Conversely, the higher probability of
finding an answer to a request using S-Flood is overshadowed by the high cost in submitting requests
to any node with which the sender node comes into contact. Concerning the Service Cache metric,
which estimates the average number of advertisements stored locally in devices’ cache, CORDIAL
controls its dimension selecting advertisements based on proactivity phase, thus avoiding its overload.
However, if compared with the performance of SIDEMAN, which is more selective, CORDIAL
requires capacity of storing slightly larger. On the contrary S-Flood, that does not have a strategy for
limiting the number of service advertisements, performs an excessive overload of the service cache.

For what has been ascertained, the Forwarding cache metric, which is limited to the performance of
CORDIAL and SIDEMAN, returns (for the former) quite different outcomes on the basis of the routing
algorithm implemented on each test carried out. Such results are more encouraging with the use of
routing algorithms that limit the number of copies of the messages as Spray & Wait with respect
others that use flooding-based techniques as Epidemic.

6. Conclusions

The ever-increasing number of mobile and wearable devices achieves short-range communications
without precedents. The request of services as well as their dissemination are crucial factors for MSN
entities, and the study of users’ social aspects become vital for fully understanding the communication
possibilities of their devices. In this paper, we presented CORDIAL, a collaborative service discovery
algorithm for MSN users. Performances of our algorithm have been compared with S-Flood, a
benchmark data dissemination technique and against SIDEMAN, a state of the art algorithm for
service discovery in MSN. Both CORDIAL and S-Flood were performed with four routing protocols
for opportunistic networks, namely Epidemic, Spray & Wait, Prophet, and BubbleRap (SIDEMAN
has its own dissemination strategy). Evaluation metrics included Accuracy, Proactivity, Query
Response Time, Service Cache and Forwarding Cache.

Our results show that the performance of CORDIAL remain stable with the different routing
algorithms, whereas depending on the co-location trace in use, its behavior is deeply diversified as
proof that disparate properties in terms of mobility/sociality of the users have a remarkable influence
on it. Results also show that CORDIAL is able to match the performance of S-Flood in terms of Query
Response Time and outclass the latter in terms of proactivity. As compared against SIDEMAN,
CORDIAL performs a better result in terms of proactivity and Query Response Time, requiring a
percentage of extra memory space for storing queries and advertisement with respect its antagonist.

The improvement of different diffusion strategies of queries and advertisements is an important aspect
which we have considered for future works. In fact, queries should be distributed to nodes with the
highest probability of finding an answer in the shortest possible time. The diffusion of advertisements
could rely on relay devices to be more accurate, and the selection of such relay devices could be
simplified by using community detection algorithms that join temporal, spatial, and social attributes.

References
[1] Girolami M., Chessa S., Caruso A., “On Service Discovery in Mobile Social Networks: Survey and

Perspectives”, Computer Networks, 88 (2015):51-71, DOI 10.1016/j.comnet.2015.06.006
[2] Álvarez-García J. A., Arcos García A., Chessa S., Fortunati L., Girolami M., “Detecting Social

Interactions in Working Environments through Sensing Technologies”, 7th International Symposium on
Ambient Intelligence (ISAmI), University of Sevilla (Spain), 1-3 June 2016. Appears in Advances in
Intelligent Systems and Computing, vol. 476, pp. 21-29.

[3] Eagle N., Pentland A., “Reality Mining: Sensing Complex Social Systems”, Personal and Ubiquitous
Computing 10.4 (2006): 255-268.

[4] Matic A., Osmani V., Mayora-Ibarra O., “Analysis of Social Interactions through Mobile Phones”,
Mobile Networks and Applications 17.6 (2012): 808-819.

[5] Wyatt D., Choudhury T., Bilmes J., Kitts J. A., “Inferring Colocation and Conversation Networks from
Privacy-Sensitive Audio with Implications for Computational Social Science”, ACM Trans. on Int.
Systems and Technology (TIST) 2.1 (2011): 7

[6] McPherson M., Lovin L. S., Cook J. M., “Birds of a Feather: Homophily in Social Networks”, Annual
Review of Sociology, 27: 415–444, 2001

[7] Chakraborty D., Joshi A., Yesha Y., and Finin T., “Toward Distributed Service Discovery in Pervasive
Computing Environments”, IEEE Transactions on Mobile Computing, 5(2):97–112, 2006

[8] Girolami M., Ferro E., Chessa S., “Discovery of Services in Smart Cities of Mobile Social Users”,
Management of Cloud and Smart city systems (MoCS), Larnaca, Cyprus, 6-9 July 2015, pp. 1081-1086

[9] Girolami M., Chessa S., Basagni S., Furfari F., “Service Discovery in Mobile Social Networks”, IEEE
25th Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’14), Washington DC,
USA, 2-5 September 2014, pp. 1464-1468

[10] Girolami M., Basagni S., Furfari F., Chessa S., “SIDEMAN: Service Discovery in Mobile Social
Networks”, Ad Hoc & Sensor Wireless Networks 34(2016):1-39

[11] Hui P., Yoneki E., Chan S.Y., Crowcroft J., “Distributed Community Detection in Delay Tolerant
Networks”, Proc. Of ACM/IEEE MobiArch, 2007, pp.7:1–7:8

[12] Orlinski M., Filer N., “The Rise and Fall of Spatio-Temporal Clusters in Mobile Ad Hoc Networks”, Ad
Hoc Networks 11(5) (2013): 1641–1654

[13] Borgia E., Conti M., Passarella A., “Autonomic Detection of Dynamic Social Communities in
Opportunistic Networks”, In Ad Hoc Networking Workshop (Med-Hoc-Net), 2011 The 10th IFIP
Annual Mediterranean (pp. 142-149).

[14] Vahdat A., Becker D. “Epidemic Routing for Partially Connected Ad Hoc Networks”, Technical Report,
Duke University, 2000. doi:10.1.1.34.6151

[15] Spyropoulos T., Psounis K., Raghavendra C. S., “Spray and Wait: An Efficient Routing Scheme for
Intermittently Connected Mobile Networks”, Proc. ACM SIGCOMM Workshop on Delay-tolerant
Networking (WDTN), pp.252-259, New York, NY, USA, 2005

[16] Lindgren A., Doria A., Schelén O., “Probabilistic Routing in Intermittently Connected Networks”,
SIGMOBILE Mob. Comput. Commun. Rev., 7(3):19-20, July 2003

[17] Hui P., Crowcroft J., Yoneki E., “Bubble Rap: Social-based Forwarding in Delay Tolerant Networks”,
Proc. 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp.
241-250, New York, NY, USA, 2008

[18] Ververidis N., Polyzos G. C., “Service Discovery for Mobile Ad Hoc Networks: A Survey of Issues and
Techniques”, IEEE Communications Surveys & Tutorials, 10(3):30–45, 2008

[19] Klein M., Konig-Ries B., Obreiter P., “Service Rings - A Semantic Overlay for Service Discovery in Ad
Hoc Networks”, in DEXA 2003, pp. 180–185

[20] Aguilera U., López-de-Peña D., “A Parameter-based Service Discovery Protocol for Mobile Ad-Hoc
Networks”, Proc. 11th international conference on Ad-hoc, Mobile, and Wireless Networks (ADHOC-
NOW), 2012. Xiang-Yang Li, Simon Papavassiliou, and Stefan Ruehrup (Eds.). Springer-Verlag, Berlin,
Heidelberg, 274-287

[21] Helal S., Desai N., Verma V., Lee C., “Konark - A Service Discovery and Delivery Protocol for Ad-Hoc
Networks”, IEEE WCNC ‘03, pp.2107-2113

[22] Nguyen T. D., Rouvrais S., “A Socially Inspired Peer-to-Peer Resource Discovery Service for Delay
Tolerant Networks”, OTM 2007, pp. 960–969

[23] Le Sommer N., Said R., Maheo Y., “A Proxy-based Model for Service Pro-Vision in Opportunistic
Networks”, MPAC workshop, pp. 7–12, 2008

[24] Al Hayat S. A., Aly S., Hares K. A., “Pipe: Impact of Power-Awareness on Social-based Opportunistic
Advertising”, Proc. of IEEEWCNC,2014

[25] He Z., Cai Z., Han Q., Tong W., Sun L., Li Y., “An Energy Efficient Privacy-preserving Content Sharing
Scheme in Mobile Social Networks”, Personal and Ubiquitous Computing, 20(5):833-846, October 2016

[26] Le Sommer N., Maheo Y., “OLFServ: An Opportunistic and Location-Aware Forwarding Protocol for
Service Delivery in Disconnected MANETs”, Ubicomm, 2011, pp. 115–122

[27] Mei A., Morabito G., Santi P., Stefa J., “Social-Aware Stateless Forwarding in Pocket Switched
Networks”, IEEE INFOCON 2011, pp. 251–255

[28] Scott J., Gass R., Crowcroft J., Hui P., Diot C., Chaintreau A., \CRAWDAD data set cambridge/haggle
(v. 2006-01-31)." Downloaded from http://crawdad.org/cambridge/haggle/, 2006

[29] Kiukkonen N., Blom J., Dousse O., Gatica-Perez D., Laurila J., “Towards Rich Mobile Phone Datasets:
Lausanne Data Collection Campaign”, in: Proc. ACM Int. Conf. on Pervasive Services (ICPS), Berlin,
2010.

[30] Laurila J. K., Gatica-Perez D., Aad I., Blom J., Bornet O., Do T.-M.-T., Dousse O., Eberle J., Miettinen
M., “The Mobile Data Challenge: Big Data for Mobile Computing Research”, in: Pervasive Computing,
2012

[31] Chessa S., Girolami M., Foschini L., Ianniello R., Corrido A., Bellavista P., “Mobile Crowd Sensing
Management with the ParticipAct Living Lab”, Pervasive and Mobile Computing (2016),
http://dx.doi.org/10.1016/j.pmcj.2016.09.005

[32] Keränen A., Ott J., Kärkkäinen T., “The ONE Simulator for DTN Protocol Evaluation”, in SIMUTools
'09: Proceedings of the 2nd International Conference on Simulation Tools and Techniques, (New York,
NY, USA), ICST, 2009.

[33] Lim H., Kim C., “Flooding in Wireless Ad Hoc Networks”, Computer Communications, 4(34):353 –
363, 2001.

Michele Girolami received his MSc and PHD in Computer Science from the University of Pisa
respectively in 2007 and 2015. Currently is in the Research Staff at the CNR-ISTI with the Wireless
Network Laboratory. His research interests are service-discovery and data diffusion in Mobile Social
Networks, context-aware middleware for Smart Environments and interoperable gateways for
sensing technologies.

Dimitri Belli received his MSc in Digital Humanities from the University of Pisa in 2016. Currently,
he is PhD student in Computer Science at the University of Pisa. His research interests are in Mobile
Distributed Systems, Internet of Things and Smart Environment with a special focus on Mobile
Crowdsensing and Mobile Edge Computing paradigms.

Stefano Chessa is Associate Professor at the Department of Computer Science of the University of
Pisa. He co-authored more than 150 papers published on international journals and conference
proceedings. His research interests are in the areas of internet of things, mobile networks, smart
environments, ambient assisted living and activity recognition.

